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Abstract—The recognition of basic human emotions based
on facial points has been studied extensively for many years.
Since complex emotions are comprised of a number of the basic
emotions, in order to identify them some way to interpolate
between known basic emotions must be identified. In this paper,
we introduce a finite mixture model to recognise complex emo-
tions and represent them onto the activation-evaluation space, a
popular model in psychology for emotion representation. Since
the activation-evaluation space is circular, the popular probability
distribution models for emotion recognition are inappropriate
to characterise complex emotions. The model that we propose
is based on a mixture of von Mises distributions, which is an
approximation to the normal distribution when wrapped onto
a circle and the most common model for describing directional
data. This paper describes the process of estimating the parame-
ters of the mixture model and tests the fit of an estimated model
to a set of ground truth values of emotion direction and intensity.

Keywords-complex emotions; emotion recognition; Maha-
lanobis distance; von Mises distribution.

I. INTRODUCTION

There has been a lot of research into emotion recognition,

analysis, and synthesis over the past three decades. Much of it

has focussed on the basic emotions (happy, angry, sad, afraid,

disgusted, surprised) and sometimes frustrated, excited, and

neutral are often also included to make a total of nine [1], [2],

[3]. However, most human emotions are not pure examples

of one basic emotion, but a mixture of them [4], known

as complex emotions. Although there are names for many

complex emotions, they are often subjective. In addition, the

number of them makes categorising them very hard. This is

particularly true when the emotions are not posed, but ‘real’.

As a consequence of these difficulties, most studies have

focused on identifying a limited set of complex emotions, e.g.,

[5], [6]. Also there has been an increasing interest in emo-

tion synthesis to animate Embodied Conversational Agents

(ECAs), most of which rely on generating new emotions by

mixing two basic emotions (see Section I-A). In addition, there

has been recent interest within the affective computing field to

map emotions into some emotion space continuum rather that

categorical labelling, in part to recognise the fact that emotions

are a continuous phenomenon and in part to enable complex

emotions to be identified without requiring labels.

In this paper, we introduce a flexible mixture model to

recognise and represent complex emotions on the basis of

known basic emotions. Following the psychological assump-

tion that complex emotions can be conceived of as mixtures

of basic emotions [7], we propose a hypothesis that it may

be possible to develop a mixture model that combines each

basic emotion in an appropriate amount to recognise and

represent complex emotions. The proposed model is based on

the activation-evaluation space, which is the most widely-used

bipolar circumplex model for representing emotions in psycho-

logical studies [8]. We use data from the IEMOCAP dataset

and identify first the basic emotions using shape models based

on a training set of human labels. We demonstrate that the

locations in activation-evaluation space correspond well to the

positions for the emotions chosen by Whissell [9]. We then

identify a statistical method to form appropriate mixtures of

the basic emotions by identifying that we are dealing with

directional data. This leads us to form a mixture of von Mises

distributions, which is the circular analogue of the Gaussian

distribution.

A. Related Work

The most common emotion space is the two dimensional

valence-activation (or activation-evaluation) space. This is a

model that represents emotions based on activation (how

motivated a person is by that emotion) and valence (how

positive or negative an emotion is). It forms a circular repre-

sentation of emotion space with neutral at the origin [8]. The

relative positions of emotions may be described by the specific

angular locations on the circle based on their similarity to one

another. For example, the angular location of anger is closer

to frustration than to happiness. Neutral lies at the centre of

the circle. The radial distance from the centre of the circle

represents the intensity of emotion; the greater the distance,

the stronger the emotion and vice-versa [8], [10].

This space has been used in emotion recognition work

such as [11], which aimed to predict valence and activation

based on video of the head and shoulders of the person, and

an associated audio track. They used the output-associative

relevance vector machine regression framework to predict

valence and activation based on learning the input and output

dependencies. The proposed framework is quite robust for

continuous emotion classification in terms of valence and

activation, but further analysis of spatio-temporal dynamics

is needed in order to understand the correlation between these

two dimensions. The blending of emotions was considered
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in [12], where a model consisting of the linear combination of

distinct continuous spaces is produced, although no results of

using it are shown. Some of the other computational methods

using this space are [13], [14], [15]. Refer to [16] for a review

of models and techniques related to the emotion continuum,

synthesis and representation of emotions.

There has also been work to synthesise complex emotions

by interpolating between two neighbouring basic emotions

on the activation-evaluation space, such as [8], [17], which

used Whissell’s list of emotion words [9]. They used the

angles of the emotions assigned by Whissell as a measure

of similarity between emotions, while activation-values were

used as a measure of intensity. [10] extended their technique

by expressing the newly created emotion in a muscle-based

talking head instead of 2D emotion space. Although there is

an overlap between these techniques and that presented in this

paper, our method is the other way round in that, given a set

of facial points, we consider how to recognise the (basic or

complex/intermediate) emotions as well as the corresponding

intensities, and map them onto activation-evaluation space.

The activation-evaluation space describes a disk of potential

emotions, and so a random variable describing emotional data

is a circular random variable. Since circular data ‘wraps’ at

2π, the popular probability distribution models for emotion

recognition such as (mixtures of) multi-variate Gaussian mod-

els are inadequate for characterising such data. The frequency

distributions of circular or angular variables can be described

by a large number of probability density functions (pdf) [18],

[19], [20]. Based on observations of the datapoints mapped

into activation-evaluation space (using the method described in

Section II-C) we believe that the data is approximately Gaus-

sian in a local neighbourhood. For this reason we have chosen

to use the von Mises distribution, which is the most common

model for symmetric uni-modal samples of circular data and is

a close approximation to a ‘wrapped normal distribution’ and

so a circular analogue of the normal distribution [19]. This

distribution was introduced by Richard von Mises in 1918. In

directional statistics its importance is almost the same as that

of the normal distribution on the line. We have used the von

Mises pdf to represent the distributions of six basic emotions,

and their mixtures to interpolate complex emotions.

II. METHODOLOGY

A. The Dataset

In practical applications of emotion recognition the ideal

would obviously be to deal with images of the face alone.

However, for simplicity we have chosen to start with a simpler

problem. We used the Interactive Emotional Dyadic Motion

Capture (IEMOCAP) dataset, in which a pair of actors were

recorded using a high-speed camera capturing 120 frames per

second. One of the actors had a set of reflective markers on

their face and the 3D positions of these markers was tracked

with very high accuracy [1]. We based our analysis on the

locations of these marker points. The videos of the actors

were watched by three human experts who labelled the dataset,

providing a ground truth labelling of the data. However, the

experts did not always agree. Each conversation consists of

almost 50 utterances with an average duration of 4.5 seconds

each, It is these utterances that were annotated by the three

human evaluators into categorical labels (neutral, happy, angry,

sad, surprise, disgust, fear, frustration, and excitement) as

well as psychological data about emotion intensity (valence,

activation, and dominance). Although nine emotional labels

were used by the humans, we chose to consider only six of

them, as for the missing emotions (disgust, surprise, and fear)

there was insufficient data. For further details on any part of

the data capture and labelling, see [1].

We consider the two actors separately in everything that

follows. We started by creating a training set of 4,000 frames

of each of the six emotions (five basic emotions and neutral)

to make a total set of 24,000 frames for each of the actors.

These 24,000 frames were chosen from the set where all three

human experts agreed on the annotation. We then created a

test set based on seven continuous conversations, each lasting

around 3 minutes, comprising almost 152, 000 frames in total.

B. The Shape Models

Based on the data from IEMOCAP we had sets of facial

points with an associated emotion label. IEMOCAP has 61

marker points (2 on the head, 6 on the hands, and the rest on

the face) in 3D. We restricted this to 28 points by ignoring the

hands and head, and replacing correlated sets of points (such

as the cheeks and forehead) by one point in each region. We

then used principal component analysis (PCA) to develop three

shape models of the dataset: the full face (28 markers), the

upper face (17 markers) and lower face (11 markers) separately

[21]. For the full face, the first 5 PCs covered 93% of the

total variation of the training data, for the upper face, the first

5 PCs covered 93.4% of the total variance and for the lower

face, the first 4 PCs covered almost 95% of the total variance

of the data. We noticed that the first PC of full and lower face,

which covers almost 50% of the total variation, was describing

the upward and downward movement of the mouth points.

This movement of lips was experimentally shown to be highly

correlated with talking, which is not directly connected with

emotion recognition, and not much else, and so we discarded

the first PC.

Consequently, we chose to use four PCs (2-5) of full and

lower face model and four PCs (1-4) of the upper face model

for our analysis. We transformed the training data into the three

different 4D spaces of these sets of four principal components.

Each datapoint was then labelled with the majority vote of the

three human experts, so that the training set consists of 24,000

points, each labelled with one of six emotions in three different

4D spaces.

For classification of a test frame, it was transformed into

the 4D space of each model separately. We then computed

the Mahalanobis distance between the test frame and each of
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the six emotion clusters. In this way, we get three sets of six

distances; one for each emotion in each model space (total 18

distances). For each emotion we take the minimum distance

across the three models and these distances are used to map

the emotion into the activation-evaluation space.

C. Mapping Emotions into the Activation-Evaluation Space

There are two steps required to map the representation of

the facial points of an image frame into activation-evaluation

space: represent the basic emotions as points within that

space, and then position each frame from there (using the

six distances to the basic emotions). The first of these steps

uses the training data, which are assumed to represent just one

emotion (since all three experts agreed on their labels), while

the second uses the test data.

As well as giving the emotion class label, the human experts

annotated each utterance with valence and activation values

(as a self-assessment manikins (SAMs) score between 1 and

5; we rescaled these values to [-1,+1]). For the 6,000 frames

of each emotion this represented 10-15 utterances, so we had

10-15 values for three expert annotations for each emotion. We

transformed these into polar coordinates (which corresponds

to intensity of emotion in the radial direction and particular

emotion in the angular direction) and then computed the mean

average of the 30-45 values for each emotion.

For the radial component the linear statistical mean average

is correct, but in order to average angles, it is not appropriate.

For example, the arithmetic mean of the angles 1◦ and 359◦

is 180◦, which is different from the geometrical mean of 0◦

[19]. Therefore, we chose to calculate the geometric mean

to get the angular position of each of the basic emotions in

the activation-evaluation space. The compution of the mean

direction and magnitude of the resultant vector for each of the

six emotions separately is as follows:

V̄ =
1

n

n∑
i=1

vali, Ā =
1

n

n∑
i=1

acti (1)

where n is the number of utterances of each emotion.

μ =

⎧⎨
⎩

tan−1(Ā/V̄ ) Ā > 0, V̄ > 0
tan−1(Ā/V̄ ) + π V̄ < 0
tan−1(Ā/V̄ ) + 2π Ā < 0, V̄ > 0

(2)

R̄2 = V̄ 2 + Ā2 (3)

μ is the mean direction and R̄ corresponds to the mean

emotion point (in terms of valence and activation) on the

activation-evaluation space.

This gave us locations for the six basic emotions (including

neutral). Each test frame is assumed to be a combination of the

basic emotions, and so we needed to calculate the weighted

average of basic emotions, where the weights correspond to

the classification confidence of test frames for each basic

emotion. We modelled the distribution of each basic emotion

as a von Mises distribution and constructed a mixture model

of them to calculate the weighted average of basic emotions

for each test frame. This is described in section II-D. In the

work described in this paper the emotions corresponding to

each utterance are mapped into the activation-evaluation space

frame by frame; however, we have also extended this work to

the computational analysis of continuous emotion trajectories

to understand emotion dynamics [22].

D. von Mises Mixture Model

A circular variable θ is said to have a von Mises distribution

if the probability density function is given by:

m(θ;K,μ) =
1

πI0(K)
e[K cos(θ−μ)], (4)

where 0 ≤ θ < 2π, K > 0 and 0 ≤ μ < 2π.

The parameter μ is the mean direction and K is the

concentration parameter, which is analogous to the (inverse)

variance: the density at the mode depends on e2K and the

larger the value of K, the greater is the clustering around the

mode. The distribution is uni-modal and symmetric about μ.

I0(K) is a normaliser to turn this into a probability density

function and consists of a modified Bessel function of the first

kind of order zero [23].

Although each emotion class is uni-modal, we cannot fit one

von Mises distribution to the full data as it is the mixture of six

different emotion classes. Such multi-modal distributions may

be regarded as mixtures of uni-modal distributions. We used a

finite mixture model of six uni-modal von Mises distributions,

given by:

M =

6∑
j=1

ωjmj(θ) (5)

where ωj are non-negative weights that sum to one. We have

already calculated the mean direction (μj) of each of the six

reference emotions in the space using Eq. (2), and the method

of estimating Kj and ωj are described in the following section.

E. Estimating the Parameters of the Mixture Model

There are several ways to estimate the parameters on which

the mixture model depends [19]. We have used the usual

maximum likelihood estimate for Kj . However, the weights

ωj of each emotion model are estimated by using the distances

to the six emotions calculated by the shape models.

1) Estimating the Concentration Parameter: The concen-

tration parameter Kj is estimated by using the Fisher equa-

tion [18]:

K̂ML =

⎧⎨
⎩

2R̄+ R̄3 + 5R̄5/6 R̄ < 0.53
−0.4 + 1.39R̄+ 0.43/(1− R̄) 0.53 ≤ R̄ < 0.85
1/(R̄3 − 4R̄2 + 3R̄) R̄ ≥ 0.85

(6)

K̂ML may be biased if the sample size (n) and R̄ are small

(specially when R̄ < 0.45). For this reason, if n ≤ 15, the

following estimate is to be preferred:

K̂ =

{
max(K̂ML − 2(nK̂ML)

−1, 0) K̂ML < 2

(n− 1)3K̂ML/(n
3 + n) K̂ML ≥ 2

(7)
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2) Estimating the Weights: We have calculated the Maha-

lanobis distance of each test frame to each of the six basic

emotions using the shape models and retained the minimum

distance of the three models for each emotion. We want to

position each test frame in activation-evaluation space using

the positions of the basic emotions. However, the Mahalanobis

distance is an unsigned quantity and so we do not know the

direction between the test frame and the mean of each of the

clusters of basic emotions. Since we have assumed that each

emotion lies along a radial line in the activation-evaluation

space we want to compute the intensity of each of the basic

emotions as a component of the complex emotion. We did

this starting at the position of the basic emotion and then

by applying a simple rule to move along that radial line:

if the distance of the test frame from neutral is less than

the mean of a particular emotion, then the distance of the

test frame from that emotion must be towards neutral i.e., its

intensity decreases and comes close to neutral and vice-versa.

We convert these distances to weights (ωj) by reciprocating

their values.

III. EXPERIMENTAL RESULTS

Fig. 1 plots the locations of the basic emotion in activation-

evaluation space using the estimated mean positions of the

training set. We observed that the estimated directions are

quite close to those specified by Whissell in [9], except that

of neutral which corresponds to a very passive emotional state

with very low intensity (see Table I for numerical values).

Based on these positions for the basic emotions we were

now able to compute the parameters of the mixture model

and test it using initially single utterances with only one

labelled emotion, and then full conversations with several

emotion transitions. Fig. 2(a) shows the von Mises probability

distributions of all emotions in the mixture model. The x-axis

shows the emotion directions (angles in degrees) (see Table

I for numerical values) and the y-axis shows the von Mises

probability densities for each distribution in the mixture model.

It is clear that there is a big overlap between the distributions

of anger and frustration as well as of happiness and excitement.

Sadness lies quite close to the anger/frustration distribution.

This is to be expected based on the Whissell angles. Fig. 2(b)

shows the von Mises probability distributions characterising

TABLE I: Angular values from Whissell’s study and those

estimated by the model.

Emotions Whissell’s Angles Estimated Angles
(in degrees) (in degrees)

Sadness 108.5 131.10
Frustration 200.6 188.48
Anger 212 194.84
Excitement 311 330.58
Happiness 323.7 341.45
Neutral 0 89.23 (inclined towards

very passive state)

Fig. 1: The position of each basic emotion (based on the

training set) in the activation-evaluation space.

one frame of an utterance labelled as [angry, angry, frustrated]

by three human experts.

We use the valence and activation values assigned to each

utterance by three human experts to estimate the ground

truth direction and intensity of emotion associated with that

utterance, which we can compare to our results. In order to

measure the association between two circular variables (the

ground truth direction and that estimated by the model), we

have used a measure of circular sample correlation coefficient

(ρc,n) [20]. If (α1, β1), · · · , (αn, βn) is a random sample, ρc,n
is defined as:

ρc,n =

n∑
i=1

sin(αi − μ) sin(βi − ν)√
n∑

i=1

sin2(αi − μ)) sin2(βi − ν)

(8)

where μ and ν are the sample mean directions.

Only one ground truth measure of direction and intensity is

available for each full utterance, while the model estimates the

directions and intensity for each frame. In order to measure

ρc,n, we generate a sample of (n=1000) random variables

based on the von Mises probability density functions for

both distributions (ground truth and model estimation). ρc,n
shows a significantly high correlation between samples of

ground truth direction and those estimated by the model for

each conversation. We also applied the pairwise t-test on the

intensity values and found that the intensity calculated by

ground truth values and those estimated by the mixture model

are not statistically different (p > 0.05). Fig. 3 presents the

visual fit of ground truth mean directions and mean intensities
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(a) (b)

Fig. 2: (a) von Mises Probability Distributions in the mixture model with unit weight, (b) von Mises Probability Distributions

characterising one frame of an utterance labelled as [angry,angry,frustrated] by three human experts.

(a) (b)

Fig. 3: The test of fit for (a) the mean ground truth directions and those estimated by the mixture model (b) the mean ground

truth intensities and those estimated by the mixture model, for each of the seven conversations in the test set. Lines mark one

standard deviation.

with those estimated by the model for the test set consisting

of seven different conversations.

Fig. 4 shows the mapping of continuous emotions

through time corresponding to a single utterance

(Ses01F script02 1 F007) in the activation-evaluation

space. The colour variation represents time, ranging from

red (dark in grayscale) to yellow (light in grayscale). The

utterance is labelled as angry/angry/frustrated by the three

human observers, which matches the observation well. The

figure also plots the ground truth values of the mean direction

and intensity and those estimated by the model. The analysis

of continuous emotions through time in activation-evaluation

space is described in [22].

Figs. 3 and 4 show that the proposed mixture model fits the

data well, despite the underlying problems with the ground

truth labelling (that is, the fact that there is only one label asso-

ciated with each utterance, which lasts for many frames while

the model estimates the values for each frame). Furthermore,

all ‘silent’ frames are unlabelled in the conversations while

the model estimates the values for those frames as well. The

intensity values do not fit as well as the directions because the

small number of samples leads to high concentration around

the mean as compared to the large number of frames in the

test set.

IV. CONCLUSION

In this paper we have presented a statistical model for

the recognition and representation of complex emotions in

the activation-evaluation space. The proposed model is based

on the psychological assumption that complex emotions are

comprised of mixtures of basic emotions. There is still debate

among psychologists on the number of basic emotions and

which emotions should be considered as basic, and of the
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Fig. 4: The mapping of continuous emotions during an ut-

terance on the activation-evaluation space, along with the

mean ground truth direction and intensity and those estimated

by the model. The movement of emotions through time is

represented by changing colour spectrum from dark/red (start)

to light/yellow (end).

six emotions that we have considered two (frustration and

excitement) are candidate basic emotions [2], [3]. However, the

proposed mixture model is quite flexible and can be applied

to any set of basic emotions. We estimated the degree of

similarity of each test frame to each of the basic emotions

and project them into the activation-evaluation space using

the von Mises mixture model, which takes into account the

circular nature of the emotion space.

In this paper each continuous conversation is mapped into

the activation-evaluation space frame by frame, but we have

extended this work to the computational analysis of continuous

emotion trajectories in the activation-evaluation space [22].

That paper focusses on the analysis of emotion dynamics,

since emotions constitute several variations in the intensity,

flow, persistence with time, and their relationships with other

emotions. By analysing the emotion dynamics through time,

we try to seek the answers about the ‘common’ paths between

emotions, the smoothness of emotion trajectories, and how do

we travel along emotion flows. The computational analysis of

emotion dynamics may be helpful in better understanding of

emotion trajectories as well as in the development of more

flexible models for emotion recognition, representation, and

synthesis.
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