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1 Introduction
Most non-rigid image registration algorithms are based on aligning pairs of images, but there
has been recent interest in groupwise algorithms, which enable the registration of a set of images
into a single common frame of reference. The set of deformation fields obtained from such a
registration contains information about the variability of structures across the group, meaning
that the quantitative analysis and modelling of the set of deformation fields provides useful
information about the images in the set. Such analysis must be based (either implicitly or
explicitly) on a particularcommonmathematical representation of the set of deformation fields.

Previous work on the analysis of shape variability has used arange of representations; ex-
amples include (Cootes et al., 1995; Bookstein, 1989; Pizeret al., 1999). Recent work on
modelling dense 2D and 3D deformation fields has either used the densely-sampled deforma-
tion vectors directly (e.g., LeBriquer and Gee (1997)), or has employed a smooth, continuous
representation of them (e.g.,B-splines, Rueckert et al. (2001)).

In this paper we describe a class of representations for suchdeformation fields based on
interpolatingsplines. We present both diffeomorphic and non-diffeomorphic representations;
the non-diffeomorphic is computationally much simpler, and suitable for use within a non-rigid
registration algorithm (Marsland and Twining, 2003), whereas the diffeomorphic representation
leads to useful metrics for the analysis of a set of parameterised warps. We demonstrate that
these metrics are superior to ad hoc Euclidean metrics for the task of classifying legal and illegal
variations of a set of shapes. We also discuss differential-geometric constructions of invariant
scalars for the analysis of the spatial variation of a warp.

2 Representing Deformation Fields
2.1 Interpolating Splines
Suppose that we have a vector-valued deformation field

�� � �� �, and that we know the deformation
at some set of knotpoints� ��� � � 	 
 to� �, where

�� � ��� � 	 �� �. We say that the spline interpolant
for this deformation field is the minimiser of a functional Lagrangian of the form:


 ��� � 	 ��� � �� �� �� � �� � �� � ��
��� �� �

�� � ��� � � �� �� 	  �� � �� �  �! � ��
��� �� �

�� � ��� � � �� �� " (1)

where
�

is some scalar differential operator, with associated functional norm  #  ! . The first
term in the Lagrangian is the smoothing or energy term; the second term with the Lagrange
multipliers ��� � ensures that the spline fits the data at the knotpoints. The choice of operator

�
and boundary conditions defines a particular spline basis. The general solution can be written:
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�� � �� � 	 �� � �� � � ��
���

�� �� � �� " �� � � " (2)

where:
the affine function� is a solution of:

� �� � �� � 	 � " (3)

the Green’s function� is a solution of: �� ��� � � �� " �� � � � � �� � �� � " (4)

with
� �

being the Lagrange dual of
�

, and� �� � � the spline coefficients. The table shows some
commonly-used Green’s functions,� 	 denotes the unit ball in
 	 , and�� 	 is its boundary.

Name Dim
� ��

Boundary condi-
tions on� 
 �� � � � �� " �� �

thin-plate
(Duchon, 1976)

even �� � �� asymptotically
linear

��� � �� ���	 ��� ��� � �� �
thin-plate
(Duchon, 1976)

odd �� � �� asymptotically
linear

��� � �� ���	
biharmonic
clamped-plate
(Boggio, 1905)

2 �� � �� � � � � � �
on and outside�� � ��� � �� �� �� � � 
 � ��� � � �,� � �� " �� � 	 � �� �!  �� �� " �!# �$��� �! $

triharmonic
clamped-plate
(Boggio, 1905)

3 �� � �% � � � � � �
on and outside�� % ��� � �� � �� � �& � '�,� � �� " �� � 	 � �� �!  �� �� " �!# �$��� �! $

Gaussian ( )� *+ ,- .
asymptotically
linear

/01 ��2 ��� � �� �� �
We can now view a set of knotpoints and knotpoint displacements as a representation of a gen-
eral displacement field in a given spline basis. A particularspline basis is defined by specifying
the form of the differential operator

�
and the boundary conditions on the spline. However, we

note that these displacement fields are only guaranteed to bediffeomorphicin the limit of small
displacements. Representing diffeomorphic displacementfields, and hence the diffeomorphism
group, is dealt with in the next section.

2.2 Geodesic Interpolating Splines
The usual approach to constructing a large-deformation diffeomorphism is to consider such a
deformation as an infinite sequence of infinitesimal deformations (Dupuis et al., 1998; Joshi
and Miller, 2000). Such a situation can be represented usinga time-varying deformation field
(flowfield)

�� � �� " 3�, where3 is the flow time, with an associated energy (the generalisation of
equation (1) ):
 45 6 	 min�7
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9

��
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��� ��
��

: �3 ;;;;
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= > (5)

It was shown by Dupuis et al. (1998) that such a flowfield alwaysgenerates a diffeomorphism
if the functional norm is finite; note that this imposes smoothness constraints on the flowfield
in space but not in time. As before, the deformation field

�� � �� " 3� (for fixed 3) is represented
by the positions of some set of knotpoints� ��� �3��; the time-varying deformation field is then
represented by the paths of these knotpoints, which need notbe smooth in time (see above).
Note that we no longer have an exact solution for the functional minimizer, since the knotpoint
paths are only constrained at their end-points. We therefore have to numerically optimise the
expression for the energy in equation (5). We use the optimisation scheme previously described
in Twining et al. (2002).
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This enables us to represent a general element of the diffeomorphism group in question (de-
fined by the particular boundary conditions) in terms of the displacements of a set of knotpoints.
For such a set of knotpoints, there will be some optimal flowpath for the knotpoints, with min-
imal energy


 45 6
. We now look at the properties of this energy, regarded as a function on the

group of diffeomorphisms.

3 Going Metric
3.1 The Metric on the Diffeomorphism Group
As in the previous section, we consider a time-varying deformation field

�� � �� " 3� and its associ-
ated diffeomorphism. Any such flowfield has an associated energy:


 ��� � 	 ��
: �3  �� �#" 3�  �! > (6)

For a given element� of the diffeomorphism group there will be an optimal flowfield
�� � � �� " 3�

that generates the given diffeomorphism with the minimum energy,

 � 	 
 ��� � �. We can then

define the function:

� �) " � � 	 �� 	 �
 � " where) is the identity element of the group. (7)

3.1.1 The Triangle Inequality
Let � and� be two arbitrary elements of the diffeomorphism group, withassociated (optimum)
flowfields

�� � and
�� � and associated (optimum) energies


 � 	 �
�� " 
 � 	 �

�� . Consider the
composition of these 2 group elements� 	 � � � , where we define the composition such that� � �� � � � �� � ����, and let� have optimum energy


 �
. By definition, we can reach� using the

following composition of flowfields:�� �#" 3� 	 
3 	 �� � 
#" 33 	 � if � � 3 � 3 	 and
�� �#" 3� 	 

 � 3 	 �� � 
#" 3 � 3 	
 � 3 	 � if 3 	 
 3 � 
 > (8)

It is trivial to show that:
 � �� � 	 
 �3 	 � 
 �
 � 3 	 " ���6�

 � �� � 	 ��
 � � �
 � � � 	 ��� �

�� �� > (9)

We know that

 � 	 �

��
is optimal, which gives the inequality:

�� 	 �� �� � �� �
�� � � �) " � � � � � � �) " � � � � �) " � � > (10)

In equation (7) we only defined the function� �) " #�. We now extend this definition so that

� �� " � � � � � � �) " � � for all � and � . (Note that this then makes� right-invariant, whereas
Camion and Younes (2001) used a left-invariant formulation; this is because of our different
definition of group composition). We can also see that� has to be a symmetric function; revers-
ing the path means changing the sign of the flowfield, which does not effect the energy. Hence,
from equation (10):

� �� " � � � � �� � � �� " � � �� � � �� � � " � � � � �� � � �� " � � � � �� " �� � � �� " � � � � " � " � " (11)

which is the triangle inequality. Therefore,� �#" #� is a distance function on the group of diffeo-
morphisms. We cannot extract an explicit form for the local metric tensor since the space is
infinite-dimensional.
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3.2 The Induced Metric on the Space of Knotpoint Positions
We can consider the metric on the space of knotpoints inducedby the distance function on the
diffeomorphism group – the mapping between the spaces is constructed by calculating the GIS
warp given by the knotpoint positions. So, for knotpoint positions � ��� � ���� ��, the induced
metric tensor has the explicit form:��� 	 �� � ��� ��� � where � �� � � � �� � " ��� � " (12)

using the multi-index notation� 	 �� " � � " 2 	 �� " � �. This then corresponds to the metric
on the space of knotpoint positions given by Camion and Younes (2001). However, in their
derivation, they only considered inexact matching betweenthe knotpoint paths and the flowfield,
whereas we have imposed exact matching. Also, the derivation given above emphasises the fact
that we can directly compare geodesic distances calculatedon spaces with varying numbers of
knotpoints, since they are all induced from the same metric on the diffeomorphism group.

4 Undergoing Analysis
4.1 Global Analysis

Figure 1:

To study the utility of the metric on the diffeomorphism group, we took a
dataset that consisted of a set of 2D T1-weighted MR axial slices of brains,
where the slices were chosen to show the lateral ventricles.For each image,
the positions of the lateral ventricles and the skull were annotated by a radi-
ologist using a set of 163 points. We took a subset of 66 of these points to
be the positions of our knotpoints. Given a pair of images, the knotpoint po-
sitions on the images give us the initial and final positions of our knotpoint
paths. We then calculated the GIS warp corresponding to these positions
using the 2D clamped-plate spline as Green’s function. An example warp is
shown in figure 1.

We then took the annotated outlines of the anterior lateral ventricles, each
consisting of 40 knotpoints. A linear SSM was built from thistraining set of
shapes. We then used this SSM to generate random example shapes. These
examples were classified as legal if the outlines of both ventricles did not
intersect either themselves or each other, and illegal otherwise – examples
of both are shown in figure 2. The training set of shapes are, bydefinition,
legal. We then calculated the GIS warps between the classified set of exam-
ple shapes and the mean shape from the model. The geodesic distance for
the warp from the mean is compared with the Mahalanobis distance in fig-
ure 3. It is immediately apparent that we cannot separate thelegal and illegal
shapes by using the Mahalanobis distance. However, using the geodesic dis-
tance, it is possible to construct a simple classifier (shownby the dotted grey
line) that separates the two groups, with only one example shape being mis-
classified (the grey circle just below the line). Given that the Mahalanobis
distance for the SSM is equivalent to a Euclidean metric on the space of
point deformations, this demonstrates the superiority of the GIS metric over
an ad hoc metric. See Twining and Marsland (2003) for furtherdetails.

We note that the metric can also be used to calculate the distances between any pair of
warps and the geodesic between them, which means that the mean of any pair of warps can
be computed. The curvature of the space at any point can also be computed using the Ricci
curvature. It is still an unsolved problem to construct generative models on this curved space.
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Figure 2: Top: Examples from the training set.

Bottom: Legal (left) and illegal (right) examples

generated by the SSM. Knotpoints are indicated

by black circles; lines are for the purposes of il-

lustration.
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Figure 3: Mahalanobis vs. geodesic dis-

tances from the mean shape for grey circles: il-

legal shapes generated by the SSM, white trian-

gles: legal shapes generated by the SSM, black

triangles: the training set.

4.2 Local Analysis
By local analysis, we mean the investigation of a single image warp. For example, we may
be able to determine that a given warp is in some sense the least representative of a set of
warps; we would then like to be able to say what it is in the related image that is causing
this difference. Previous authors have used the Jacobian ofthe deformation field, which gives
the local change of scale; however, what is potentially moreinteresting are the places where
the Jacobian changes. This suggests that instead we should look at curvature measures of the
deformation field.

The warp energy itself is an integral over the image of some curvature measure. In the
biharmonic case, the warp energy is the approximate Willmore energy, where the Willmore
energy is the square of the mean curvature of the deformationfield. We could also investigate the
Gaussian curvature. All these curvature measures involve second derivatives of the deformation
field, which, for certain choices of Green’s function (e.g.,the biharmonic case), will diverge at
the knotpoints.

We can also consider differential-geometric scalar invariants. In( dimensions, we have
the source space, with Cartesian coordinates��� � and flat metric��� , that maps to the point�� � �� � 	 �� � � �� �� in the target space. This map induces a second metric on the source space:

��� � �� � 	 � ��
���

# � ��
�� �

	 ��� ��� # ��� ��� > (13)

The Jacobian of the mapping is just the determinant of this induced metric. We might be tempted
to calculate the Ricci scalar for this metric; however, since this is just a reparameterisation of
the flat metric on the target space, hence the curvature is identically zero.
We can construct the vector-valued tensor:���� 	 �� �� �� " (14)
which can give the approximate Willmore energy (thin-platebending energy) of the warp:�Tr

���� � # �Tr
���� � > (15)

Given that we have two Riemannian metrics on the source space, we can also consider the
difference of these two metrics. This is the pseudo-Riemannian metric:
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��� 	 ��� � ��� > (16)

Muñoz Masqué and Valdés Morales (1994) show that the lowest-order scalar invariant that can
be built from a pseudo-Riemannian metric in( dimensions is of order 2 (that is, involves second
derivatives). In 2D, there is only one such invariant, the Ricci Scalar, whereas in 3D there are 3
second-order invariants. It is trivial, but tedious, to calculate the Ricci Scalar for the metric��� .
5 Conclusions
The analysis of the results of non-rigid registrations can be considered as a problem in differ-
ential geometry, inasmuch as we are imposing a metric on the diffeomorphism group. We have
demonstrated that the approach of generating metrics basedon the spline basis gives superior
results to the use of ad hoc Euclidean metrics.

We have also shown how ideas from differential geometry can be applied to the local anal-
ysis of a single warp.
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