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1 Introduction

Most non-rigid image registration algorithms are basedl@mning pairs of images, but there
has been recent interest in groupwise algorithms, whichlerlhe registration of a set of images
into a single common frame of reference. The set of defoondtelds obtained from such a
registration contains information about the variabilifystructures across the group, meaning
that the quantitative analysis and modelling of the set dbrheation fields provides useful
information about the images in the set. Such analysis maidiased (either implicitly or
explicitly) on a particulacommommathematical representation of the set of deformationdield

Previous work on the analysis of shape variability has usethge of representations; ex-
amples include (Cootes et al., 1995; Bookstein, 1989; Rtal., 1999). Recent work on
modelling dense 2D and 3D deformation fields has either usediénsely-sampled deforma-
tion vectors directly (e.g., LeBriquer and Gee (1997)), as bmployed a smooth, continuous
representation of them (e.g.,B-splines, Rueckert et @D1}).

In this paper we describe a class of representations for defdrmation fields based on
interpolatingsplines. We present both diffeomorphic and non-diffeorharpepresentations;
the non-diffeomorphic is computationally much simpleid anitable for use within a non-rigid
registration algorithm (Marsland and Twining, 2003), wdes the diffeomorphic representation
leads to useful metrics for the analysis of a set of paransetwarps. We demonstrate that
these metrics are superior to ad hoc Euclidean metrics édiaik of classifying legal and illegal
variations of a set of shapes. We also discuss differeggametric constructions of invariant
scalars for the analysis of the spatial variation of a warp.

2 Representing Deformation Fields

2.1 Interpolating Splines

Suppose that we have a vector-valued deformationigty, and that we know the deformation
at some set of knotpoin{g” : i = 1toN'}, wherev(z7*) = #*. We say that the spline interpolant
for this deformation field is the minimiser of a functionaldgrangian of the form:
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whereL is some scalar differential operator, with associatedtional norm|| - ||. The first
term in the Lagrangian is the smoothing or energy term; tlversd term with the Lagrange

multipliers{\;} ensures that the spline fits the data at the knotpoints. Thieelof operator
and boundary conditions defines a particular spline basis.general solution can be written:

a7



where;

N

9(Z) = §(@) + Y &G, F),

=1

the affine functiory is a solution of: L§ (%) = 0,
the Green'’s functio is a solution of: (L'L) G(&, ) o« 6(z — ),

(@)

3)
(4)

with LT being the Lagrange dual df, and{a*} the spline coefficients. The table shows some
commonly-used Green'’s functiori®} denotes the unit ball iR”, andoD” is its boundary.

Name Dim| L'L | Boundary condi-| G(Z,7)

tions onf ()
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(Duchon, 1976) linear
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(Boggio, 1905) ’ =7
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We can now view a set of knotpoints and knotpoint displacemas a representation of a gen-
eral displacement field in a given spline basis. A particsfdine basis is defined by specifying
the form of the differential operatdy and the boundary conditions on the spline. However, we
note that these displacement fields are only guaranteeddiffeemorphian the limit of small
displacements. Representing diffeomorphic displaceffirdds, and hence the diffeomorphism
group, is dealt with in the next section.

2.2 Geodesic Interpolating Splines

The usual approach to constructing a large-deformatidedaliorphism is to consider such a
deformation as an infinite sequence of infinitesimal defdiona (Dupuis et al., 1998; Joshi
and Miller, 2000). Such a situation can be represented wsiimge-varying deformation field
(flowfield) ¥(Z, t), wheret is the flow time, with an associated energy (the generatisaif

equation (1) ): .
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It was shown by Dupuis et al. (1998) that such a flowfield alwgsserates a diffeomorphism
if the functional norm is finite; note that this imposes snip@ss constraints on the flowfield
in space but not in time. As before, the deformation fig{d, ¢) (for fixed ¢) is represented
by the positions of some set of knotpoidt& (¢) }; the time-varying deformation field is then
represented by the paths of these knotpoints, which neetiensimooth in time (see above).
Note that we no longer have an exact solution for the funeliamnimizer, since the knotpoint
paths are only constrained at their end-points. We thezdiarve to numerically optimise the
expression for the energy in equation (5). We use the opditinis scheme previously described
in Twining et al. (2002).
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This enables us to represent a general element of the diffigadmsm group in question (de-
fined by the particular boundary conditions) in terms of tispldicements of a set of knotpoints.
For such a set of knotpoints, there will be some optimal flaWwpar the knotpoints, with min-
imal energyE,,;. We now look at the properties of this energy, regarded asietiin on the
group of diffeomorphisms.

3 Going Metric

3.1 TheMetric on the Diffeomorphism Group
As in the previous section, we consider a time-varying defdion fieldv(Z, ¢t) and its associ-
ated diffeomorphism. Any such flowfield has an associatecthgne

1
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For a given elemeny of the diffeomorphism group there will be an optimal flowfielt| Z, t)
that generates the given diffeomorphism with the minimuergn £, = E[7Y]. We can then
define the function:

d(e,g) = d, = \/E4, wheree is the identity element of the group. (7)

3.1.1 TheTriangleInequality

Let f andg be two arbitrary elements of the diffeomorphism group, vasglsociated (optimum)
flowfields 7/ and # and associated (optimum) energiBs = d%, E, = df,. Consider the
composition of these 2 group elements= f o g, where we define the composition such that
h(Z) = f(g(%)), and leth have optimum energ¥),. By definition, we can reach using the
following composition of flowfields:

- 1 . - 1 —t .
V(e t) = *g< f) if0<t<t and V(1) = 5f<-,t t) it <t<1. (8)

t 7 1= 1-7
It is trivial to show that:
I O Ey . _,
E[V] = o g+ Ty min E[V] = (\/ ++/E, ) (ds + d,)? 9)
We know thatE), = d2 is optimal, which gives the inequality:
dh :dfog < df+dg :>d(6,f0g) < d(e,f)+d(e,g). (10)

In equation (7) we only defined the functiaffe, -). We now extend this definition so that
d(g,fog)=d(e, f) for all f andg. (Note that this then makes right-invariant, whereas
Camion and Younes (2001) used a left-invariant formulatibrs is because of our different
definition of group composition). We can also see thiaas to be a symmetric function; revers-
ing the path means changing the sign of the flowfield, whicts sae effect the energy. Hence,
from equation (10):

d(h, fogoh) <d(h,goh)+d(goh, fogoh) = d(h,k) < d(h,1) +d(l, k)Y h,k,1, (11)

which is the triangle inequality. Thereforé(., -) is a distance function on the group of diffeo-
morphisms. We cannot extract an explicit form for the localtme tensor since the space is
infinite-dimensional.
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3.2 Thelnduced Metric on the Space of Knotpoint Positions

We can consider the metric on the space of knotpoints indbgete distance function on the
diffeomorphism group — the mapping between the spaces s&mrmted by calculating the GIS
warp given by the knotpoint positions. So, for knotpointifioas {#* = {z/}}, the induced
metric tensor has the explicit form:

9gap = (G5;'6,) whereG;; = G(&, 4), (12)

using the multi-index notationx = (i, ), 5 = (j,v~). This then corresponds to the metric
on the space of knotpoint positions given by Camion and Ysy2601). However, in their
derivation, they only considered inexact matching betwkerknotpoint paths and the flowfield,
whereas we have imposed exact matching. Also, the denivgii@n above emphasises the fact
that we can directly compare geodesic distances calcutategaces with varying numbers of
knotpoints, since they are all induced from the same metfrithe diffeomorphism group.

4 Undergoing Analysis

4.1 Global Analysis

To study the utility of the metric on the diffeomorphism gpowve took a
dataset that consisted of a set of 2D T1-weighted MR axiegéslof brains,
where the slices were chosen to show the lateral ventriE@mseach image,
the positions of the lateral ventricles and the skull weneodated by a radi-
ologist using a set of 163 points. We took a subset of 66 ofetipeénts to

be the positions of our knotpoints. Given a pair of images kifiotpoint po-

sitions on the images give us the initial and final positiohew knotpoint

paths. We then calculated the GIS warp corresponding tethesitions
using the 2D clamped-plate spline as Green’s function. Aamgde warp is
shown in figure 1.

We then took the annotated outlines of the anterior latenaincles, each
consisting of 40 knotpoints. A linear SSM was built from ttr&ning set of
shapes. We then used this SSM to generate random exampkssidqese
examples were classified as legal if the outlines of bothnaes did not
intersect either themselves or each other, and illegakraibe — examples
NETECEReY Of both are shown in figure 2. The training set of shapes arelefipition,
legal. We then calculated the GIS warps between the cladsiieof exam-
ple shapes and the mean shape from the model. The geodeaitcdisor
the warp from the mean is compared with the Mahalanobismtistan fig-
ure 3. Itisimmediately apparent that we cannot separategiadand illegal
shapes by using the Mahalanobis distance. However, ustggetbdesic dis-
tance, it is possible to construct a simple classifier (shioyie dotted grey
line) that separates the two groups, with only one exam@peheing mis-
classified (the grey circle just below the line). Given the Mahalanobis
distance for the SSM is equivalent to a Euclidean metric ensppace of
point deformations, this demonstrates the superiorithef&IS metric over
an ad hoc metric. See Twining and Marsland (2003) for furtieails.

We note that the metric can also be used to calculate thendesabetween any pair of
warps and the geodesic between them, which means that the sheay pair of warps can
be computed. The curvature of the space at any point can alsormputed using the Ricci
curvature. It is still an unsolved problem to construct gatiee models on this curved space.

Figure 1:
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Figure 2: Top: Examples from the training set.  Figure 3: Mahalanobis vs. geodesic dis-
Bottom: Legal (left) and illegal (right) examples tances from the mean shape for grey circles: il-
generated by the SSM. Knotpoints are indicated  legal shapes generated by the SSM, white trian-
by black circles; lines are for the purposes of il-  gles: legal shapes generated by the SSM, black
lustration. triangles: the training set.

4.2 Local Analysis

By local analysis, we mean the investigation of a single ienagrp. For example, we may
be able to determine that a given warp is in some sense therlgaesentative of a set of

warps; we would then like to be able to say what it is in theteglamage that is causing

this difference. Previous authors have used the Jacobithreafeformation field, which gives

the local change of scale; however, what is potentially mioteresting are the places where
the Jacobian changes. This suggests that instead we slouldtl curvature measures of the
deformation field.

The warp energy itself is an integral over the image of sonmreature measure. In the
biharmonic case, the warp energy is the approximate Wikneergy, where the Willmore
energy is the square of the mean curvature of the deformfaioin We could also investigate the
Gaussian curvature. All these curvature measures invelv@sl derivatives of the deformation
field, which, for certain choices of Green’s function (etge biharmonic case), will diverge at
the knotpoints.

We can also consider differential-geometric scalar irar@s. Inn dimensions, we have
the source space, with Cartesian coordindtest and flat metrics,,, that maps to the point
&(#) = {X, ()} in the target space. This map induces a second metric on tineesspace:

. 0® 00 - -
%Aw“&@'a%,_<@ﬂﬁ'(@¢)' (13)
The Jacobian of the mapping is just the determinant of thiséed metric. We might be tempted
to calculate the Ricci scalar for this metric; however, sitius is just a reparameterisation of
the flat metric on the target space, hence the curvaturensiaadly zero.
We can construct the vector-valued tensor:

3,, =0,0,9, (14)
which can give the approximate Willmore energy (thin-plaéading energy) of the warp:
(Tré,) - (T ) - (15)

Given that we have two Riemannian metrics on the source spaEean also consider the
difference of these two metrics. This is the pseudo-Rienaamnmetric:
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hp,l/ = g,uu - 5,11,1/- (16)
Mufioz Masqué and Valdés Morales (1994) show that thedtweder scalar invariant that can
be built from a pseudo-Riemannian metrizidimensions is of order 2 (that is, involves second
derivatives). In 2D, there is only one such invariant, thecR6calar, whereas in 3D there are 3
second-order invariants. Itis trivial, but tedious, toccgédite the Ricci Scalar for the metig,, .

5 Conclusions

The analysis of the results of non-rigid registrations carconsidered as a problem in differ-
ential geometry, inasmuch as we are imposing a metric onitfeohorphism group. We have
demonstrated that the approach of generating metrics lmas#te spline basis gives superior
results to the use of ad hoc Euclidean metrics.

We have also shown how ideas from differential geometry @agplied to the local anal-
ysis of a single warp.
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