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Abstract. This paper introduces a novel groupwise data-driven algo-
rithm for non-rigid registration. The motivation behind the algorithm
is to enable the analysis of groups of registered images; to this end, the
algorithm automatically constructs a low-dimensional, common represen-
tation of the warp fields. We demonstrate the algorithm on an example
set of 2D medical images, and show that we can obtain good registration
across the set, with automatic detection and correction of misaligned
examples, whilst still maintaining a low-dimensional representation.

1 Introduction

The registration of sets of medical images, i.e., finding dense correspondences
between images with the aim of aligning analogous structures, is an important
problem in medical image analysis [3, 5, 8, 15]. Tasks that are suitable for image
registration include the correction for patient motion either during a single scan
sequence (e.g., [15]), or between scans of the same patient taken at different
times, such as in the monitoring of disease progression. Other common examples
are the registration of multi-modal (e.g., MR, PET and CT) images for either
a single patient or multiple patients [16], the registration of time-series of a
moving object such as the heart [4], and registration onto an anatomical atlas
for automated segmentation [8].

The majority of registration algorithms proposed in the literature are based
on aligning pairs of images. However, there has been recent interest in groupwise
algorithms, which enable the registration of a set of images into a single common
frame of reference. The set of deformation fields obtained from such a registra-
tion contains information about the variability of structures across the group,
meaning that the quantitative analysis and modelling of the set of deformation
fields provides useful information about the images in the set. Such analysis must
be based (either implicitly or explicitly) on a particular common mathematical
representation of the set of deformation fields — the importance of representation
in modelling has been demonstrated by the fact that explicitly optimizing the
representation can lead to appreciable improvements in model performance [6].
It is this requirement of a common mathematical representation that underlies
the method of groupwise non-rigid registration that is introduced in this paper.

We contend that groupwise registration should be considered as a separate
problem in image registration, not just as a series of pairwise registrations. While
pairwise algorithms can provide accurate registration between two images, a
series of pairwise registrations will not necessarily have a common underlying
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representation; conversely, where there is a common representation it may be too
general (and too high-dimensional) for direct use in analysis. These problems can
be seen in previous work on modelling based on sets of pairwise registrations,
which have either used the densely-sampled deformation vectors directly [9, 10],
or employed a smooth, continuous representation of them [14].

In this paper we describe a data-driven algorithm for registering, iteratively,
a group of images in 2D or 3D. A common representation of the deformation
fields, based on interpolating splines, is introduced; the set of knotpoints that
define the splines are refined as the algorithm iterates in order to improve all of
the registrations in the group. In addition, the frame of reference (i.e., the choice
of reference image) can also change in order to increase the overall accuracy of
the registrations. We demonstrate the action of the algorithm on a set of 2D MR
images of axial slices of human brains.

2 Spline-Based Representations and Polyharmonic
Clamped-Plate Splines

The non-rigid registration algorithm described in this paper is based on the
polyharmonic (order m) interpolating clamped-plate spline (CPS) in n dimen-
sions [18], which is used to interpolate the warped image between knotpoints.
A related algorithm has been applied to pairwise registration in [11]. While
other algorithms have used spline-based techniques for representing deformation
fields, (e.g., the Free-Form Deformations used by Rueckert et al. [15], based on
B-splines) such splines are in essence smoothing splines — while the splines can
be iteratively refined in a data-driven way by locally increasing the resolution
of the mesh of spline knotpoints [12], this requires a computationally expensive
algorithm such as the Oslo algorithm [7] and, as observed by Rohlfing and Mau-
rer [12] “it is difficult to preserve consistency”. Interpolating splines do not have
this drawback — new knotpoints that improve the registration can be introduced
without significant additional computational cost, and without affecting any of
the other knotpoints.

The polyharmonic clamped-plate spline is represented by the initial and fi-
nal positions of a set of nj knots with initial positions Qo = {qog € R", 5 =
1,...,nt} and final positions Q1 = {q13}. The associated warp is denoted by
f() =w(Qo,Q1), with the action on points & € R™ being:
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The vector-valued coefficients {ag} are found by solving the exact matching

conditions for the knotpoints f(qog) = g1, and the functions G} are the mth

order polyharmonic clamped-plate Green’s functions in n dimensions [1]. The
boundary conditions on these Green’s functions, and hence on the warps, is that
the deformation is identically zero on and outside the unit ball in n dimensions,
meaning that any part of the image outside the boundary is not warped. In 2
dimensions the biharmonic (m = 2) CPS (used in the experiments reported in
section 4) has Green’s function:
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The clamped-plate bending energy of these warps is given by: 2)
Elw] =) (- ) G (dop: qop)s (3)
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with djw] = y/E[w] being defined as the associated distance.

3 The Iterative Non-Rigid Registration Algorithm

This section introduces the registration algorithm as a general framework. Var-
ious computational considerations are introduced, and the results of using the
algorithm, together with further implementation issues, are given in section 4.

3.1 Notation and the Algorithm
We consider a set of images {I; : i = 1,..., N}, represented as scalar-valued
functions defined on some dense point set Xy. Initially, these points will be a
regular grid of points (the set of pixel or voxel centres), which we will denote by
Xp. By interpolation we can extend such an image to be continuously defined
within the hull of X; we can also extrapolate, defining values of I outside this
hull as either the background value or the median value of I(Xj), as appropriate.
Images can be warped by applying a warping function h : Xo — Xp, = h(Xo),
to the grid, where the warp could be a general affine warp g, a CPS warp f, or
some composition of them, h = f o g. This warped grid is then used to generate
the warped image using the pullback map h*:

h T — I where I (Xo) = I(h(X0)), = I™ (W1 (X0)) = I(Xo), (4)

which requires interpolation of the function I from the points Xy to h(Xp).

The similarity between two images I and I’ is quantified by the evaluation
of some objective function @ (I(Xy), I'(Xp)). One member of the image set I; is
selected as the reference Iy and the remainder are aligned with that image using
affine and non-rigid registration, with warps being selected so that:

g = argmin® (1,1 ) fi = argmin [@ (1.17°) 4 ABLf]] . (5)

where AE([f] is a regularisation term proportional to the energy of the warp.
Non-rigid CPS warps are defined by a set of knotpoints, as shown in section 2.

The positions of these knotpoints, Qorig’ are first defined on the reference image,

and then affinely warped, Qéi) = gi( ). The non-rigid warp generated by

_ Qorig
these knots is f(q) = w(QéZ),q), where ¢ are the final knotpoint positions, and

the optimised final knotpoints on the free image I; are then given by:
V) = argmin | (L,(Xo), 1/ (X0)) + AELf(@)]] - (6)
For a set of free images, we define the warp distance between pairs by first

affinely registering each pair:
gi; = argmin & (Ii(Xo), 9 (X0)> , (7)
g

with gs; = g;, and then computing the warp distances:
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The structure of our iterative algorithm can be summarised as follows, with
some features described in more detail afterwards:

The Algorithm

— Initialisation
e Scale the common pixel/voxel grid X, so that it lies within the unit ball
e Select an initial reference image /s from the set {I;,i =1,... N}
e Pick a set of initial knotpoint positions Qorig on this reference image
e Affinely register every pair of images to obtain {g;;}
— % Main Loop
e Find the {g;} that affinely align each free image with the reference, and
compute the transformed positions of the knotpoints Q(()i) = gi(Qorig)
e Transfer the knotpoints onto the free images to obtain the initial estimate
of the final knotpoint positions Qy) = Qéi)
e Perform pairwise non-rigid registration of each free image to the reference
by optimising over the final knotpoint positions Qgi)
e Calculate the warp distances d;; between every pair of images
e Use this set of distances to select a candidate new reference image [g/
o If this differs from the current reference:
x Refine the knotpoint positions Q<1S ) on the candidate reference Ig:
+x Compare the objective function scores for alighment to the original and
refined candidate references, accept the new reference if scores improve
Transfer the knotpoint positions to the frame of the updated reference image
Use the groupwise discrepancy between the free images and the reference
(calculated in the frame of the updated reference) to select new knotpoints
— lterate from % until convergence

Affine Alignment There are two sets of affine alignments computed in the
algorithm. Firstly, the free images are each registered onto the chosen reference
image. This is the standard pairwise alignment. Secondly, during the first pass
through the loop, the alignments between every pair of images are computed to
enable the warp distances to be computed and the new reference to be selected.
While this is a computationally expensive algorithm (O(N?)), it only has to
be performed once for a given set of images — no matter how many times the
algorithm is run — and the optimisation can be initialised using the affine warp
given by Procrustes alignment of the knotpoint positions.

Non-Rigid Registration At each pass through the main loop, each of the
free images are non-rigidly registered onto the chosen reference. Rather than
optimising over all knotpoints simultaneously, we instead optimise over each
in turn, and repeat this several times, randomising the order at each repetition.
This speeds up the optimisation considerably, without loss of accuracy. Providing
that the reference image does not change, a full optimisation is only required
for the new knotpoints added during that iteration — the registration is already
optimised with respect to the knotpoints defined earlier. Further details about
the non-rigid registration between pairs of images, including examples of warps,



can be found in [11]. When the reference image changes, the positions of the
knotpoints on that reference are first updated, and then each of the free images
is non-rigidly registered onto the new reference. However, the existing knotpoints
should require only minimal refinement.

Selection of New Reference Image At each iteration the algorithm considers
selecting a different image as the reference. The choice of reference image is
important because all other images are warped onto it, so ideally it should be
as representative of the set as possible. For this reason, the candidate reference
is selected to be the image that minimises the sum of pairwise distances to all
of the other images. However, the reference is only updated if doing so does not
degrade the set of objective function scores (i.e., does not damage the quality of
the registration of the group as a whole).

The knotpoint positions on this candidate reference QES ) are refined before
deciding whether to adopt it as the new reference. This is done by perturbing
the knotpoint positions (to move it out of possible local minima), and then re-

optimising over the QSS/) using non-rigid registration to either another random
image, or the current reference. We find that misalignment of an image can cause
it to be erroneously selected as a candidate reference (see Fig. 1 for an example
of this). The refinement step above gives us a chance to automatically correct
this misalignment.

Data-driven Knotpoint Selection A set of knotpoints are defined on the
reference image as the basis for the first pass through the algorithm, and this set
of knotpoints is extended on each pass, based on the groupwise discrepancy be-
tween the free images and the current reference. The choice of knotpoint selection

Fig. 1. Demonstration of refinement of knotpoints on candidate new reference. In plots
(iv) to (vi), images are pulled back to the frame of the example free image (ii). (i) The
initial reference image and automatically generated initial knotpoints. (ii) Example free
image. (iii) Unrefined candidate reference. (iv) Interlaced example free images, showing
relative alignment. (v) & (vi) Interlaced example free and candidate reference showing
alignment before and after refinement.



method will depend on the particular image set being used. In the experiments
described in section 4, the initial set of knotpoints were automatically gener-
ated to be spaced at equal angles around the centre of the image and placed
on strong edges, which generally corresponded with the skull (Fig. 1). The new
knotpoints that are added during each iteration of the algorithm are placed in
regions where the quality of the registration, averaged across the group, is worst;
that is, in the areas that display the greatest misalignment (Fig. 2). It should
be noted that this method of groupwise non-rigid registration is not related to
landmark-based methods of rigid or non-rigid registration (e.g., [13,2]). Such
landmark-based methods rely on finding significant corresponding landmarks on
all images, whereas our method only uses landmark identification on a single
image, as an aid to initialising the knotpoints on the first pass through the
algorithm.

4 Experiments

To demonstrate the action of our algorithm, we took a set of 13 2D T1-weighted
MR images of normal brains (see Fig. 4). The 227 x 227 pixel images were from
13 different individuals, and the slices chosen to show the anterior and posterior
parts of the lateral ventricles. A reference image was chosen at random (see Fig.
1), and 10 initial knotpoints generated automatically, as described previously.
The boundary circle was chosen as the circumecircle of this reference image. Each
free image was affinely aligned to this reference, optimising over scaling, rotation
and translation.

A first pass through the algorithm was then performed, using mutual infor-
mation as the objective function; a subset of results are shown in Fig. 4. For this
choice of objective function, the discrepancy is defined as follows. For each free
image, the bins of the intensity histogram for that free image each define a set
of target pixels. This set of pixels in the free image corresponds to a set of pixels
in the reference, for which we construct a model of the intensity values across
the set. The discrepancy for a particular reference pixel is then the probability
of the occurrence of that pixel value, according to the intensity model of the
reference set to which it belongs.

This small number of knotpoints on the skull aligns all 12 free images rea-
sonably well, despite the large variations in skull shape across the set. There
are slight misalignments for just 2 free images (2"¢ and 5" in Fig. 4) — these
particular images do not have a large CSF-filled space at the front of the skull,
and the registration has aligned the skulls from these images with the front of
the brain of the reference. A new reference was chosen (image 5!, see Fig. 1
(iii)). Note that the registration between free images (Fig. 1 (iv)) is considerably
better than between the proposed reference and one of the same free images
(Fig. 1 (v)) — this is because of the misalignment of image 5. The knotpoints
for this candidate reference were then refined; however, even after refinement,
the original reference still performed better in terms of the mean mutual infor-
mation across the set (see Fig. 3), so was retained. Some additional knotpoints
were chosen (see Fig. 2), and a second pass of the algorithm performed. The
successive improvements of the mutual information across the group is shown in

Fig. 3.
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Fig. 4. First pass: non-rigid registration to the initial reference and knotpoints. Some of the
(affinely aligned) free images are shown in the white box with, underneath, the interlaced
images of the reference and the registered free images. The initial reference is in Fig. 1 (i).

5 Discussion and Conclusions

This paper has introduced an algorithm for non-rigid registration of groups of
medical images. The algorithm is based on splines that interpolate between a
set of knotpoints defined on a reference image; these knotpoints are transferred
onto all of the free images, with their positions being optimised, so that there is
a common low-dimensional representation of the group of images. Furthermore,
the choice of reference image can be changed by the algorithm, based on the
warp distances between all of the images in the set, and additional knotpoints
are added at each iteration based on the groupwise discrepancy between the free
images and the new reference in order to improve the registration.

The algorithm has been demonstrated on a set of 13 axial MR slices of the
human brain. We have shown the ability of the algorithm to automatically cor-
rect misaligned examples, and to correctly register the group of images, despite
the low-dimensionality (14 knotpoints) of the common representation. The ex-
periments described were based on an implementation of the algorithm coded
in MATLAB; a single pass through the algorithm took approximately 10 hours



on a 1.8 GHz P.C. The algorithm can be extended to 3D without difficulty (the
description of the triharmonic CPS in 3D is given in [17]); however the compu-

tational costs will require a compiled implementation.
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