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This Letter investigates two-species totally asymmetric simple exclusion process (TASEP) with site sharing
in a one-channel transport system. In the model, different species of particles may share the same sites,
while particles of the same species may not (hard-core exclusion). The site-sharing mechanism is applied
to the bulk as well as the boundaries. Such sharing mechanism within the framework of the TASEP has
been largely ignored so far. The steady-state phase diagrams, currents and bulk densities are obtained
using a mean-field approximation and computer simulations. The presence of three stationary phases
(low-density, high-density, and maximal current) are identified. A comparison on the stationary current
with the Bridge model [M.R. Evans, et al., Phys. Rev. Lett. 74 (1995) 208] has shown that our model can
enhance the current. The theoretical calculations are well supported by Monte Carlo simulations.

© 2009 Elsevier B.V. All rights reserved.
1. Introduction

The totally asymmetric simple exclusion process (TASEP) is a
one-dimensional lattice model where particles move unidirection-
ally with hard-core exclusion (that is, each site can be occupied
by at most one particle at any given time). The original TASEP
was introduced in 1968 as a model of biopolymersation of ribo-
somes [1]. Recently, a great number of variants have been devel-
oped to model biological transport, such as in [2–8]. The model
also finds applications in traffic simulations and other transport
systems e.g., in [9–11]. Meanwhile, as a paradigm of driven diffu-
sive systems, TASEPs have been investigated theoretically in their
own right [12–24].

In these TASEP models, either single species of particles or
multiple species, particles follow the site-exclusion mechanism, i.e.,
hard-core rule, on one channel or multiple channels of movement.
The TASEP with site-sharing mechanism has not been well studied
so far. We believe that the study on the TASEPs with site shar-
ing is interesting and worthwhile theoretically and practically. In
many realistic models component entities such as different species
of particles do indeed share the same sites simultaneously and
this multiple occupancy likely plays an important role in system
properties. In fact, it is possible that different species particles can
share the same site. For instance, when pedestrians walk along a
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narrow one-channel pathway in opposite directions and meet to-
gether, they may share a space, and then pass each other.

The proposed two-species TASEP model is based on the site-
sharing mechanism. There is also a substantial literature on two-
species ASEP models with a particle-exchange mechanism, e.g., un-
der periodic boundary conditions [25–27] and open boundary con-
ditions [12,28–31]. Evans et al. [12] firstly investigated two-species
TASEP with a particle-exchange mechanism and open boundaries.
Their model is known as the Bridge model. [29] studied an inter-
esting case in which two-species of particles can be converted each
other with a certain probability at boundaries. Popkov et al. [30]
introduced the Bridge model with two junctions. More recently,
Gupta et al. [31] extended the Bridge model to the relaxed case,
that is, the particle-exchange mechanism is also applied to the
boundaries. The basic stationary and dynamic properties of non-
equilibrium systems with two-species of particles are reviewed
in [32]. The spontaneous symmetry breaking (SSB) is observed
and exhibited as high-density/low-density phase and/or asymmet-
ric low-density/low-density phase in [12,25,28,30,31]. Physically
one would expect that these models show a similar phase diagram
and general behaviour since the details of the exchange mecha-
nism (with or without site-sharing) are expected to be irrelevant.

In this Letter, we investigate a one-dimensional lattice model
under open boundary conditions. In the model, two species of par-
ticles move in opposite directions and are allowed to share a site
with a certain probability when they meet. We note that there
are two major differences between our model and previous two-
species TASEP models: (1) In the bulk, two species of particles
may share the same site in our model, rather than exchanging
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Fig. 1. Diagrammatical representation of a one-dimensional TASEP with two species
of particles. The (+) particles move from the left to the right, represented by filled
circles, while the (−) particles do the opposite movement, denoted by open circles.
A site can be shared with probability q by two species of particles when they meet
on the same lattice.

Fig. 2. Four possible states on each site. Pe, P+, P− , and P± denote corresponding
probabilities.

each other in other models; (2) In the boundaries, our model al-
lows two species of particles to share the same site as well, rather
than excluding each other like in the Bridge model and its vari-
ants. Interestingly, when the boundary conditions of our model are
the same as that of the Bridge model, the spontaneous symme-
try breaking is observed. This work is now in progress and will be
reported later.

This Letter is organized as follows. In Section 2, the model is
described and mean-field theoretical analysis is conducted. In Sec-
tion 3, we discuss the results of theoretical calculations and Monte
Carlo simulations. A comparison is also made between our model
and the Bridge model. We give our conclusions and areas for fur-
ther investigation in Section 4.

2. The model and mean-field approximation

An illustration of a one-dimensional TASEP with two species
of particles is shown in Fig. 1. The system includes N sites. Each
site can be occupied by a (+) particle and/or a (−) particle, or
empty. The (+) particles move from the left to the right, repre-
sented by filled circles, while the (−) particles (denoted by open
circles) move in the opposite direction (see Fig. 1). In each time
step, a site i is picked. At this site, a (+) particle or a (−) parti-
cle may be chosen. If a (+) particle is chosen, one of the following
rules is applied:

• In the bulk. (1) A (+) particle at site i can hop to site i + 1
with probability 1 if the target site is empty; (2) If the target
site is occupied by a (−) particle, the (+) particle can share
the site with probability q (0 � q � 1); (3) If the target site
is occupied by another (+) particle, the (+) particle stays at
site i.

• In the boundaries. (1) A (+) particle enters the left boundary
with rate α+ if the first site is empty, or with probability qα+
if the site is occupied by a (−) particle; (2) A (+) particle can
exit the system from the last site at the right boundary with
rate β+ .

If a (−) particle is chosen, the similar rules are performed by
(−) particles from the right to the left. For simplicity, this Letter
just discusses the case of α+ = α− = α and β+ = β− = β .

Since a site can be shared by two species of particles in our
model, there are four possible states for each site: (1) occupied by
a (+) particle; (2) occupied by a (−) particle; (3) occupied by both
a (+) and a (−) particle; (4) empty. According to these states, we
define four corresponding probabilities: P+(i), P−(i), P±(i), and
Pe(i) as shown in Fig. 2. Clearly, these probabilities can be nor-
malised as:
P+(i) + P−(i) + P±(i) + Pe(i) = 1. (1)

The evolution equation of P±(i) over time can be given by

dP±(i)

dt
= qP±(i − 1)P−(i) + qP+(i)P±(i + 1)

+ qP+(i − 1)P−(i) + qP+(i)P−(i + 1)

− P±(i)Pe(i + 1) − P±(i)Pe(i − 1)

− qP±(i)P+(i − 1) − qP±(i)P−(i + 1), (2)

where the four positive terms represent the possible inflow for the
formation of P± from site i −1 to site i for a (+) particle and from
site i + 1 to site i for a (−) particle. The four negative terms corre-
spond to the possible outflow from site i. Similarly, the evolution
of P+ and P− can be written as

dP+(i)

dt
= P+(i − 1)Pe(i) + P±(i − 1)Pe(i) − qP+(i)P−(i + 1)

− P+(i)Pe(i + 1), (3)
dP−(i)

dt
= P−(i + 1)Pe(i) + P±(i + 1)Pe(i) − qP−(i)P+(i − 1)

− P−(i)Pe(i − 1). (4)

We note that Eqs. (2)–(4) are not exact, but mean-field approx-
imations. In steady state, these probabilities are expected to be
independent of positions of sites. Thus, it is reasonable to neglect
i indices in above equations. The above equations will tend to be
zero in a stationary state, that is, dP±/dt = dP+/dt = dP−/dt = 0,
which leads to

qP+ P− = P± Pe. (5)

The currents and bulk densities for (+) particles and (−) parti-
cles can be written as follows

J+ = (P± + P+)(Pe + qP−), ρ+ = P± + P+, (6)

J− = (P± + P−)(Pe + qP+), ρ− = P± + P−, (7)

where J+ and J− represent currents of (+) particles and (−)
particles in the system, respectively. ρ+ and ρ− denote the cor-
responding bulk densities. The first term multiplier in the current
expression in Eq. (6) represents the probability of finding a (+)
particle at a site, while the second term corresponds to the prob-
ability that the next site is available. The system is in left–right
symmetry, and the dynamical rules are identical. Under the condi-
tions where the symmetry of the system is retained, one expects
that the currents of (+) particles and (−) particles should be equal.

When J+ = J− , one obtains P+ = P− by comparing Eq. (6)
with Eq. (7). Then by using Eq. (1), Eq. (5) can be rewritten as

qP 2+ = P±(1 − 2P+ − P±), (8)

so that

P+ =
−P± +

√
(1 − q)P 2± + qP±

q
. (9)

According Eqs. (1) and (9), Eq. (6) is given by

J+ = 1

q2

(
(q − 1)P± +

√
(1 − q)P 2± + qP±

)(
q + 2P± − 2qP±

− (2 − q)

√
(1 − q)P 2± + qP±

)
. (10)

In the low-density (LD) phase, the current of (+) particles at
the entrance of the left boundary is equal to

J+ = α(Pe + qP−). (11)
LD
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According to the rule of current conservation in a steady state and
comparing Eq. (11) with Eq. (6), we have

α = P± + P+. (12)

Eq. (12) means that the bulk density of (+) particles ρ+ = P± +
P+ = α. Then according to Eqs. (9) and (12), we obtain

P+ = 1 − √
1 − 4α(1 − q)(1 − α)

2(1 − q)
,

P± = 2α(1 − q) − 1 + √
1 − 4α(1 − q)(1 − α)

2(1 − q)
. (13)

Substituting Eq. (13) into Eq. (10), the system current in the LD
phase reads,

J+
LD = α

2

(
1 − 2α + √

1 − 4α(1 − q)(1 − α)
)
. (14)

In the high-density (HD) phase, the system dynamics is deter-
mined by exit rate β . The current for (+) particles at the right
boundary is given by

J+
HD = β(P± + P+). (15)

Applying the rule of current conservation, the following equation
is derived from Eqs. (6) and (15)

β = Pe + qP−. (16)

As P+ = P− , according to Eq. (9), then

q(1 − q)P 2± + (
q2 + 4β − 4qβ

)
P± − q(1 − β)2 = 0. (17)

The above equation has a solution

P± = −(q2 + 4β − 4qβ) + √
q4 + 4(1 − q)[q2 + β2(2 − q)2]

2q(1 − q)
.

(18)

P+ can be obtained from Eq. (9)

P+ = 2q + 2q2β + 4β − 6qβ − q2 − √
q4 + 4(1 − q)[q2 + β2(2 − q)2]

2q(1 − q)(2 − q)
.

(19)

Thus, we can calculate the bulk density and current in the HD
phase

ρ+
HD = q − 2β

2q
+

√
q4 + 4(1 − q)[q2 + β2(2 − q)2]

2q(2 − q)
,

J+
HD = βρ+

HD. (20)

In the maximal-current (MC) phase, the current, JMC , is in-
dependent of α and β , but is only determined by q. When J is
maximal, Eq. (10) corresponds to ∂ J+

∂ P± = 0 which leads to

[
2q2 − 3q − 2(1 − q)(4 − 3q)P±

]√
(1 − q)P 2± + qP±

+ (1 − q)(2 − q)P±
[
(1 − q)P± + q + 1

2

]
− 1

2
q + 1 = 0. (21)

When q is known, P± can be solved exactly. Then we can calculate
P+ , JMC , and ρ+ using Eqs. (9) and (10).

We then examine two extreme cases: q = 0 and q = 1. With re-
gard to q = 0, a (+) particle cannot share a site with a (−) particle,
i.e., P± = 0. Obviously, the system is blocked and system current
J = 0. Theoretically, P+ = 0.5 and P− = 0.5, which leads to Pe = 0
and J+ = 0. As to q = 1, a (+) particle does not distinguish be-
tween a (−) particle and a hole. And similarly for a (−) particle.
The system is therefore decoupled into two independent TASEPs.
Thus, system current J and density ρ satisfy: J = ρ(1 − ρ). Ac-
cording to Eq. (9), P+ = √

P± − P± . Then Eq. (6) is rewritten as

J+ = √
P±(1 − √

P± ). (22)

When the system is in the LD phase, comparing Eq. (22) with
Eq. (11), one obtains

√
P± = α. The corresponding current in this

phase can be read as J = α(1 − α). For the HD phase, comparing
Eq. (22) with Eq. (15), we have

√
P± = 1 − β . Thus the current in

the HD phase is equal to J = β(1 − β). In the MC phase, P± = 1/4
can be derived from Eq. (21) when q = 1. Then according to Eq. (9),
we have P+ = 1/4. Substituting values of P± and P+ into Eq. (6),
one obtains J+ = 1/4 and ρ+ = 1/2. It can be seen that the sys-
tem for q = 1 reduces to the standard one-dimensional TASEP with
random update [13].

For another limiting case α− = 0, Eq. (1) is simplified as
P+(i) + Pe(i) = 1 (i.e., P±(i) = P−(i) = 0). The corresponding sta-
tionary current and bulk density for (+) particles can be repre-
sented as J+ = P+ Pe and ρ+ = P+ (see Eq. (6)). Thus, the model
reduces to the standard TASEP. A proper mean-field theory for this
case has been developed by Derrida et al. [13].

We next examine the possibility of observing spontaneous sym-
metry breaking in the system. Spontaneous symmetry breaking is
characterized by unequal bulk densities of (+) particles and (−)
particles under the symmetric structure and updating rules. There
are six possibly asymmetric phases in the system, i.e., the (LD, LD),
(HD, HD), (MC, MC), (LD, HD), (LD, MC), and (HD, MC) phases. The
(LD, HD) phase means that (+) particles are in the LD phase, while
(−) particles are in the HD phase.

In the (LD, LD) phase, J−
LD at the entrance of the right boundary

is given by

J−
LD = α(Pe + qP+). (23)

Comparing the equation with Eq. (7), one obtains α = P± + P− .
Similarly, we have α = P± + P+ for (+) particles. We then de-
rive P+ = P− , which contracts the assumption P+ �= P− . Thus, the
(LD, LD) phase does not exist in the system. Similarly, we can con-
firm nonexistence of the (HD, HD) phase.

For the (LD, HD) phase, according to Eqs. (6) and (7), J+
LD −

J−
HD = qP±(P− − P+)+ Pe(P+ − P−) �= 0. If J+

LD − J−
HD > 0, one has

qP± > Pe as P− > P+ . Then according to Eq. (16), β = Pe +qP+ <

qP± +qP+ = qα. However, as (+) particles are in the LD phase, we
have α < β , which means qα < qβ . Thus, it leads to β < qα < qβ .
This is impossible for 0 < q < 1. In the similar way, we disconfirm
the assumption J+

LD − J−
HD < 0. Therefore, we conclude the (LD, HD)

phase does not exist in the system.
As mentioned above, the MC phase is determined by P± . The

values of P± are the same for (+) particles and (−) particles in
the system. Thus, the (MC, MC) phase reduces to the MC phase. If
the (LD, MC) phase could exist in the system, P± in the LD phase
should equal to that in the MC phase. However, P± only depends
on q in the MC phase (see Eq. (21)), while it depends on q and α
in the LD phase. Therefore, it is impossible that the (LD, MC) and
(HD, MC) phases exist in the system. Therefore, only three station-
ary phases: LD, HD and MC are identified in this system, which are
similar to the standard TASEP [13], but with shifted boundaries ac-
cording to different sharing probability q. The phase diagram of
the present model can be derived from the extremal principle pro-
posed by Popkov and Schutz [33], which is expected to agree with
the results obtained from the mean-field approximation in this Let-
ter.



M. Liu et al. / Physics Letters A 374 (2010) 516–521 519
Fig. 3. (a) Phase diagram of the TASEP with two species of particles and sharing probabilities q = 0.6 and 1. (b) The critical points (α∗, β∗) with different q in the α–β plane.
The solid line is for theoretical results, while the filled symbols correspond to simulation results. These figures are averaged over 10 runs.

Fig. 4. (a) Currents obtained from theoretical calculations and computer simulations with α = 1. (b) Jmax versus q with α = 0.9 and β = 0.9. The lines are for theoretical
predictions, while the symbols correspond to simulation results. Data are collected by averaging 10 independent configurations.
3. Results and discussion

To verify the theoretical analysis above, Monte Carlo simula-
tions were carried out. Open boundary conditions and random up-
date were used with the system size N = 1000. For larger size N ,
our simulations show little deviations from those presented here.
The first 1 × 109 time steps were discarded to let the transient
out. The system current and density profiles were obtained by av-
eraging 5 × 109 time steps. The system current J is defined as
J = J+ = J− and bulk density as ρ = ρ+ = ρ− , unless stated oth-
erwise.

Phase diagrams obtained from theoretical predictions and com-
puter simulations are presented in Fig. 3(a). By comparing the sim-
ulation results with theoretical calculations we conclude that the
simple mean-field approach agrees well with simulations. How-
ever, there are still deviations from simulations for some values
of q (see Fig. 3(b)). The simulations were repeated ten times with
different random number seeds and the resulting critical points
(α∗, β∗) are shown in Fig. 3(b). α∗ and β∗ in Fig. 3(b) are intersec-
tion points of the LD, HD, and MC phases. Thus, a phase diagram
can be determined once a (α∗, β∗) pair is obtained. For example,
the MC phase is specified by α � α∗ and β � β∗ . Theoretical anal-
ysis of the model indicates that the phase diagram is similar to
the normal TASEP [13], however, the phase boundaries are shifted
according to different values of sharing probability q.

Current profiles in these phases with different q are investi-
gated. For simplicity, we assume that α is fixed while β changes
from 0 to 1. Fig. 4(a) shows the stationary current obtained from
theoretical calculations and computer simulations for α = 1.0.
With the increase of β , a phase transition from the HD phase to
the MC phase is observed in which the maximal current Jmax is
maintained and its value is determined by q. In Fig. 4(b), Jmax

versus different q is shown with α = 0.9 and β = 0.9. It can be
seen that the theoretical predictions are in agreement with com-
puter simulations for q = 1, while they have slight deviations from
simulation results (e.g., q = 0.1 and q = 0.5). The reason for this
is probably due to neglecting the correlations between the two
species of particles.

An interesting quantity in this study is P± which is the quantity
that is new compared to previous one-dimensional two-species
TASEP models. Thus, density profiles (denoted by P+ , P− , P± , Pe)
in the LD, HD and MC phases can be obtained from theoretical
predictions and computer simulations and have shown in Fig. 5.
It is seen that theoretical results of P+ , P− , P± , Pe agree well
with computer simulations when the system is in the LD or HD
phase (see Figs. 5(a–b)). However, when the system is in the MC
phase, only P+ and P− show a good agreement with simulation
results. Large deviations can be found in P± and Pe (see Fig. 5(c)).
For a better understanding of the MC phase, Fig. 5(d) shows the
bulk density of (+) particles in the MC phase, i.e., ρ+ = P+ + P± .
One can see that the theoretical results of the bulk density agree
qualitatively with simulation results when the system is in the MC
phase.

The relationship among P+ , P− , P± , Pe and α is simulated
and shown in Fig. 6. For simplicity, we arbitrarily set β = 1 and
α changing from 0 to 1. In this case, the phase transition from
the LD phase to the MC phase is observed. In the MC phase, P+− is
determined by sharing probability q, independent of α and β . With
the increase of q, Pe increases in the MC phase. Upon increasing
to q = 1, P+ = P− = P± = Pe = 0.25 (see Fig. 6(d)). On the other
hand, when increasing q, the region of the MC phase shrinks while
the region of the LD phase expands (see Fig. 3(a) and Figs. 6(a–d)).

A comparison of the average currents is also made between our
model and the Bridge model under the same parameters in Monte
Carlo simulations. Taking the flipping phenomenon into account in
the Bridge model, we use the average current of (+) and (−) par-
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Fig. 5. (Color online.) Density profiles (P+ , P− , P± , Pe ) in the LD, HD and MC phases obtained from theoretical predictions and computer simulations. Symbols represent
the simulation results, while the corresponding thick lines are for the theoretical calculations. (a) LD phase with α = 0.2, β = 0.8 and q = 0.8. (b) HD phase with α = 0.8,
β = 0.2 and q = 0.8. (c) and (d) MC phase with α = 0.8, β = 0.8 and q = 0.8. (d) Bulk density of (+) particles in the MC phase, i.e., ρ+ = P+ + P± .

Fig. 6. (Color online.) P+ , P− , P± and Pe versus α with β = 1 and different q. (a) q = 0.3, (b) q = 0.6, (c) q = 0.9 and (d) q = 1.
ticles here, i.e., Jave = ( J+ + J−)/2, where J+ and J− are currents
of (+) and (−) particles, respectively. It is assumed that α = 0.2,1,
q = 0.3,0.6,0.9 while β changes within [0,1] so that we can ob-
serve the average current in all possible phases. It is shown that
our model can enhance the average current than that in the Bridge
model (see Fig. 7). The reason for this is probably due to the re-
laxed boundary conditions and the site-sharing mechanism used in
our model.
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Fig. 7. (Color online.) A comparison on the stationary currents between our model and the Bridge model with different β in simulations. Jave is the average current of (+) and
(−) particles, i.e., Jave = ( J+ + J−)/2. The red filled symbols correspond to our model, while the black open symbols are for the Bridge model. (a) α = 0.2 and (b) α = 1.0.
4. Conclusion

This Letter studied the dynamics of two-species TASEP with site
sharing in a one-dimensional system under random update and
open boundary conditions. Hard-core exclusion is only applied to
the particles of the same species, while different species of par-
ticles may break the hard-core exclusion, that is, they can share
the same site with a certain probability q. The site-sharing mech-
anism is applied to the bulk as well as the boundaries. This kind
of sharing mechanism has been little studied so far, to the best
of our knowledge. The steady-state phase diagrams, currents and
bulk densities are obtained using a simple mean-field approxi-
mation and extensive Monte Carlo simulations. Three stationary
phases (low-density, high-density and maximal current) are iden-
tified with shifted phase boundaries, compared to the standard
TASEP [13]. The phase boundaries depend on q. In the MC phase,
currents and density profiles are dictated by q. We also compared
our model with the Bridge model. It is shown that our model can
enhance the current. Our theoretical predictions are supported by
computer simulations.

Our work shows that the sharing mechanism of two species
of particles is an interesting issue and needs to be further in-
vestigated. Our model can be extended to a more general case
where particles can randomly attach to or detach from the lattice.
It would be interesting to study the present model with parallel
updating procedure.

Acknowledgements

The authors are grateful to anonymous referees for their valu-
able comments and suggestions.

References

[1] J.T. MacDonald, J.H. Gibbs, A.C. Pipkin, Biopolymers 6 (1968) 1.
[2] T. Chou, G. Lakatos, Phys. Rev. Lett. 93 (2004) 198101.
[3] S. Klumpp, R. Lipowsky, Phys. Rev. E 70 (2004) 066104.
[4] K. Nishinari, Y. Okada, A. Schadsschneider, D. Chowdhury, Phys. Rev. Lett. 95

(2005) 118101.
[5] D. Chowdhury, A. Schadsschneider, K. Nishinari, Phys. Life Rev. 2 (2005) 318.
[6] R. Lipowsky, Y. Chai, S. Klumpp, S. Liepelt, M.J.I. Müller, Physica A 372 (2006)

34.
[7] A. Morozov, E. Pronina, A.B. Kolomeisky, M.N. Artyomov, Phys. Rev. E 75 (2007)

031910.
[8] J.J. Dong, B. Schmittmann, R.K.P. Zia, Phys. Rev. E 76 (2007) 051113.
[9] D. Chowdhury, L. Santen, A. Schadschneider, Phys. Rep. 329 (2000) 199.

[10] J. Otwinowski, S. Boettcher, J. Stat. Mech. (2009) P07010.
[11] S. Srinivasa, M. Haenggi, TASEPs: A Statistical Mechanics Tool to Analyze the

Performance of Wireless Line Networks, IEEE/ACM Transactions on Networking,
2009, submitted for publication.

[12] M.R. Evans, D.P. Foster, C. Godreche, D. Mukamel, Phys. Rev. Lett. 74 (1995)
208;
M.R. Evans, D.P. Foster, C. Godreche, D. Mukamel, J. Stat. Phys. 80 (1995) 69.

[13] B. Derrida, E. Domany, D. Mukamel, J. Stat. Phys. 69 (1992) 667.
[14] A.B. Kolomeisky, J. Phys. A 31 (1998) 1153.
[15] N. Rajewsky, L. Santen, A. Schadschneider, M. Schreckenberg, J. Stat. Phys. 92

(1998) 151.
[16] J. de Gier, B. Nienhuis, Phys. Rev. E 59 (1999) 4899.
[17] G.M. Schütz, in: C. Domb, J.L. Lebowitz (Eds.), Phase Transitions and Critical

Phenomena, vol. 19, Academic Press, San Diego, 2001.
[18] G. Lakatos, T. Chou, J. Phys. A 36 (2003) 2027.
[19] A. Parmeggiani, T. Franosch, E. Frey, Phys. Rev. Lett. 90 (2003) 086601.
[20] F.H. Jafarpour, Phys. Lett. A 326 (2004) 14.
[21] P. Pierobon, M. Mobilia, R. Kouyos, E. Frey, Phys. Rev. E 74 (2006) 031906.
[22] R. Wang, M. Liu, R. Jiang, Phys. Rev. E 77 (2008) 051108.
[23] M.E. Foulaadvand, A.B. Kolomeisky, H. Teymouri, Phys. Rev. E 78 (2008) 061116.
[24] M. Liu, R. Wang, R. Jiang, M.B. Hu, Y. Gao, Phys. Lett. A 373 (2009) 195.
[25] P.F. Arndt, T. Heinzel, V. Rittenberg, J. Stat. Phys. 97 (1999) 1.
[26] K. Mallick, S. Mallick, N. Rajewsky, J. Phys. A 32 (1999) 8399.
[27] M.R. Evans, Y. Kafri, E. Levine, D. Mukamel, J. Phys. A 35 (2002) L433.
[28] E. Levine, R.D. Willmann, J. Phys. A 37 (2004) 3333.
[29] F.H. Jafarpour, Physica A 358 (2005) 413.
[30] V. Popkov, M.R. Evans, D. Mukamel, J. Phys. A 41 (2008) 432002.
[31] S. Gupta, D. Mukamel, G.M. Schütz, Robustness of spontaneous symmetry

breaking in a bridge model, arXiv:0908.2571.
[32] G.M. Schütz, J. Phys. A 36 (2003) R339.
[33] V. Popkov, G.M. Schütz, Europhys. Lett. 48 (1999) 257.


	Asymmetric exclusion processes with site sharing in a one-channel transport system
	Introduction
	The model and mean-field approximation
	Results and discussion
	Conclusion
	Acknowledgements
	References


