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Abstract—Robot mapping, both indoor and outdoor, is typ-
ically based on sets of 3D measurements of the environment
(point clouds) coming from either laser range nders or RGB- |
D cameras. While both of these sensors provide accurate data
about objects within a relatively wide range, they fail to pro-
vide directly informative readings about transparent or highly
re ective objects, which are commonly found in cluttered indoor
environments such as homes and of ces.

This paper describes a method of recognising that there are
transparent objects within a scene and reconstructing them frm
the limited information that is available. Our method is based

on reconstructing geometric properties of the missing objects . . : : .
using inference from the shadows that are left. This provides an Fig. 1: Example of a scene with a transparent objeefr:

estimation of the volume of missing objects. a photograph of the scene, anight: a 2D projection of the

We demonstrate the methods rst on regular measurable corresponding 3D point cloud with points coloured by depth.
object to compare our estimation with measured data and present Note that the transparent French press (circled in black) on
the reconstruction of two exemplary transparent objects. provides point cloud information for the handle.

I. INTRODUCTION

The aim of interacting with mobile robots in human envi- ) )
ronments (whether the aim is household assistance or seniBOWS that transparent objects are hard to see using normal

robotics within an of ce environment) necessitates theotob CaMera images, except for re ections at certain angles.

being able to reliably sense and represent its environmentowever, note that there is some indication of the presence
Research over the past few years has resulted in the religidhe cafetiere in the point cloud in that the “shadow" of
generation of consistent 3D maps of human environmerif§ Object is present. It is this shadow that provides the
based on data from 3D laser scanners and RGB-D camefgformation that we can use to reconstruct the object, as we
which produce point cloud data. Depending on the sens¥fill demonstrate in this paper.

additional information such as pixel colour or remissioftuesa A Related Work

may be attached to each measurement point.

Many of the problems of dealing with such data, such There have been three principal approaches to the detection
as simultaneous localisation and mapping (SLAM) [2, 5ind recognition of transparent objects in the literatuoe; &
and “closing the loop'Ll7_12], are generally well-reseaath review of methods, seel[4]. In the rst approach re ections
However, there are limitations on the environmental materi that appear from certain angles are used to infer informatio
that the sensors can detect. Laser range nders and RGBabout the pose of transparent objecis [8], while in the s&con
cameras have problems measuring distances to both transphysical properties of the materials are usec [4, 13].
ent and re ective surfaces: laser beams get refracteditiegu ~ However, the techniques that bear most similarity to our
in faulty measurements at some locations and the same hal# are in the third class. These are based on either time
true for the infrared pattern projected by RGB-D cameras. of ight (ToF) cameras (e.g.,[6]) or the Microsoft Kinect, a

An example of this “blindness' is shown in Figure 1. Orommon RGB-D camera, such as|[10] and very recently [9],
the left is a 2D image of the scene, while on the right is @and the sensor that is used for the experiments in this paper.
2D projection of the corresponding 3D point cloud. There is In [6] the fact that in ToF intensity images any transparent
a cafetiere (or French Press) for making coffee on the taldbjects appear darker than their background is used totdetec
(circled in the point cloud data), which is made of pyrex anpotential transparent objects. The same scene is then diewe
thus hard to see in both images. In particular, in the poifrom a different viewpoint, and the assumption of planaisty
cloud data, only the handle can be seen. The 2D image als®d to reconstruct them via triangulation.
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In accordance with our assumption, the rst step in the
detection is a segmentation of planar surfaces within the
scene, which proceeds in an iterative RANSAC fashion and
terminates if either the number of points that lie within the
plane is below a given threshold or the number of remaining
scene points to be analysed is suf ciently small.

Planes are represented as a point in the plaheuid the
normal vectom so that every poinp, in the plane satis es:

@) (b) pp N d=0 )

All remaining points are clustered based on the Euclidean
distance between each point and its neighbours, reasoning
that each of these clusters belongs to one object or to nearby
multiple objects if they are positioned close together.

While transparent objects do not usually provide any points
on their surface, re ective objects often feature correeam
surements for portions of their surface. To determine if a
cluster re ects the actual size of the surface of the object,
we compare the cluster with the corresponding shadow on
Fig. 2: Result of scene analysis for the data shown in Figurethe planar surface(s). This is done by computing the concave
shows the detected clusters and their concave hulls phedl of the object clusters and projecting these points ohéo
jected onto the two detected planes, clusters are disshgdi planar surface of the detected planes. To project a gwoint
by colour;[(B) shows the detected clusters (blue) and thelonging to the concave hull, we write the equation for each
projection of the corresponding concave hulls, red indisatpoint p; on the line between the sensor and the hull point as:
that the concave hull point does not have any points from the
planes in its neighbourhood, while for the green points one p=a(h s+ h @)

of the points in cyan lies in their neighbourhodd;| (c) showgheres; is the sensor location aralis a scalar value.
the regults of analysis of the detecteq holes: green irelcat Obviously, the intersection of the plane de ned A (1) and
that this part of the hole can be explained by a measureme¥ |ine in [2) corresponds to the projection of the pdinon

in front of it (blue points), while red points are holes thaghe plane observed from positieg. The intersection can be
are unexplained by the data, and therefore potentially frogdmputed by solving:

re ective or transparent objects.

©
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By way of contrast, machine learning methods can be usedfor each of the projected points a radius search is performed
as in Lysenkov et aI[[ﬂO], where single frames taken byam the inliers of the planar surface that they are projected.o
Kinect sensor are used to rst detect positions for transpiar In the case of regular objects, where the shadow corresgonds
objects and then apply edge tting to identify the object anthe measured cluster points, the distance between a prdject
its pose from a set of trained objects. point of the cluster's concave hull and the enclosing planar

Both [6] and [9, 10] attempt to grasp identi ed transpareritlliers is quite small, thus the radius search will returreon
objects, providing feedback on correctness of their apgives.  (or more) points in the neighbourhood of the projected point

Our approach is also based on data from a Kinect sensBhysters that contain only partial measurements of theasarf
but we do not require a learning process. Instead, we use a & the object, observable from the current viewpoint, will
frame to detect transparent objects, and then, simiIaEl];o [eature a substantial portion of projected points where the
acquire additional frames from different viewpoints. Heee radius search will not return any planar inlier; an illusoa
we only assume that there is a planar surface underneathisoprovided in Figurél3. The result of this is that the frastio
behind the transparent object (i.e., the oor or wall, orlléd. of projected points that do not have a corresponding point on
the plane to the total number of projected points gives a good
estimate whether a cluster resembles the object it belangs t

Our detection of transparent objects requires the assampti  With the methods discussed so far we are able to determine
that at least one planar surface is present in the obsereed sdf there is an object present in the scene that was only
and that the transparent object is placed either on top orpartially measured (which is therefore potentially reige),
front of that planar surface. This means that the “shadow' béit not whether any transparent objects are present, diege t
the object lies on one or more planes. This is less resteictitypically do not yield any cluster of measurement points.
than comparable approaches (iiﬂ@, 10]) which assuate th To detect those we now consider the “holes' in our seg-
the transparent object be placed on top of a planar surfacanented planar surfaces, where by “hole' we mean regions
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any of the planar surfaces. If the ray intersects a leaf of the
octree, we know that something was measured between the
camera and this particular part of the hole, thus its exégten
is explained by the data as a regular occlusion. Alternigtive
if the ray does not intersect any leaf, then this part of thie ho
region is not explained by the available data.

A visualization is given by Figuré_2c, where the centres
v of empty voxel cells, transformed back into the scene, are
@) ‘ (b) coloured in green, if they can be explained by some measure-
ment — the intersected octree leaves are shown in blue. Red
points indicate that no octree leaf was positioned betwhisn t

grid cell and the sensor. Not surprisingly the hole caused by
\ N F— the cafetiere in Figurie_2c features a lot of red points. Hawev
?\“. regular objects, like the paper trays on the right of the séen
R y Figure[2¢€, can exhibit some of these points on their edges, du
. ./ to sensor noise. Thus we de ned a threshold for the fraction
(d)

of unexplained empty grid cells in relation to the total o th
cells de ning a hole, to determine that a transparent (or at
© least, only partially measured object) is present in theerur
Fig. 3: Projection of cluster hulls on the detected pldnd: (&ame. In our experiments a threshold®5 worked well, i.e.
photograph of the scenfe; [b) cutout of the correspondingtpoive assume a transparent object if 50% or more of the grid cells
cloud, coloured by depth from senspr;](c) planar inliers art ning a hole could not be explained by measured data. Via
projected cluster hull points: red indicates that no poiasw the location of the hole in the 3D point cloud of the current
returned from the radius sear¢h;](d) 2D grid representaifonscene we also have a good estimate about the position of the
the planar surface, which is used to identify the “holest th&ransparent object.
signify transparent objects.
I1l. RECONSTRUCTION
In sectior{I) we presented a simple approach to determining
within the boundaries of the convex hull of the planar swefasvhether or not a transparent or only partially measured-spec
that have an absence of measurement points and are eitlar object is present in a single RGB-D frame / laser scan.
surrounded by measurement points or share a (partial) bortfesuch a case we can use the information gathered by several
with another plane. These holes can easily be determinee if ilmames from different viewpoints in order to give an estienat
transform the planar surface into a 2D grid and start a simplé the size and position of the object. Once this has been
region growing process from grid cells that do not contaip arone the individual frames have to be transformed into the
point data. If multiple empty grid cells are connected toheasame reference frame. This problem is well studied and akver
other, this region becomes a hole in the previously desgribebust solutions exist like ICRI[1], so we do not consides thi
sense. The advantage of the grid representation is not ophpblem here, although a good registration is crucial f@ th
that it becomes fast and easy to detect the hole regionsybutsbibsequent reconstruction process.
choosing an appropriate grid cell size we gain some robsstne The basic idea for the reconstruction itself is pretty senpl
towards sensor noise, which is needed if we want to apply dithile a single frame / scan does not provide sufcient
approach to RGB-D data from Kinect-like cameras. information to estimate the size and shape of an object witho
An example for the 2D grid is shown in Figurel 3d: Regularlyprior knowledge, it does provide information via the océbns
lled grid cells are coloured white and empty cells either irthat the object caused. From a single frame we can only deduce
blue (detected hole) or gray (outside of the planar surfac#)at somewhere between the camera and the hole on the planar
Black points indicate the convex plane hull, if it divergesni  surface there must have been some object that refracted or
the border of the lled cells, while green marks the intetgmt otherwise obstructed the measurements of the sensor. This
with other planes and red the grid points that lie behindlzrot basically leaves a volume that resembles a cone, except that
planar surface. its base is composed of the shape of the detected hole on the
Once the holes in the planar surfaces have been determip&har surface. In the remainder of this paper we will refer
in the 2D grid we can transform the corresponding grid ceb such a volume as an (occlusiofystum Such a frustum
centres back into their 3D position in the frame. For each ofn be constructed for each individual frame. If all frames a
the resulting 3D points we de ne the ray from them towardeegistered consistently than we can easily conclude theat th
the origin (i.e. the position of the sensor). For each of ¢hesbject that caused the occlusion in each individual frame ha
rays we check if it intersects any of the acquired measuremém be part of the intersection of all frusta.
points, which can be done ef ciently by creating an octree Thus, the more observations from different viewpoints we
from all points of the current frame that do not belong tgather from the object in question, the more precise our



estimation of the object becomes, since the intersection ca,
only shrink with additional information. If viewed as anrite

ative process the intersection operation rst takes thetfnn | ; 7 &?‘ &?‘
of some arbitrary initial frame and then fuses it with th »
new information provided by the next frame: all parts of th e \ b 1) R
initial frustum which do not t the newly gathered data from E

the second frame are removed. The caveat in this is that if @) (b) (©)

the registration of the frames is skewed, then the resultipgy 4. Example of misclassi catiofiz () photo of the cayetir
intersection will be skewed as well — there might be partgame: [(6) projected concave hull, for the red points no
where we “chiseled’ away too much or not enough. Howevg{eighbour was returned by the radius seafcH; (c) analysis of

a reasonable estimate of the objects volume. by measurements (in blue).

In order to compute the intersections we chose a sample-
point-based approach. In a rst step we create a point sample

representing the planar occlusion caused by the transpareRe implementation was done @++ and makes use of the

object. If only a very coarse approximation is desired thten point Cloud Library(see [11]) and its many data structures.
can be suf cient to simply reuse the centres of the empty koxe

grid cells, otherwise the hole region can be resampled wifh Detection Results
a desired density. The results presented in se¢fidn IV wereAs a rst evaluation for our detector we took a small set
obtained using random point samples with a densityldf of frames 80 in total), each containing at least one planar
points per cr, but we believe that a less dense representatiearface and at least one object on top of or in front of
will also provide good results, although we have not yehe planar surface. The objects that we used were either (1)
performed any experiments in that direction. regular (i.e. they can be measured without any problemy), (2
In a similar way to the method by which transparent objecte ective (so that they provided only partial measuremgnts
are detected, a ray is project from each sample point to t8 transparent (i.e., providing very few measurementbgré
origin (i.e., the camera position) using equatibh (2). Iftpa were 32 regular objects, 7 re ective ones, and 9 transparent
of the occlusion could be explained by regular measuremamntes. 16 of the 30 frames contained at least one non-regular
points, for example if an object is a combination of transpéar object. The detection rates of this small experiment arevsho
and non-transparent materials, then the rays are only apgroTable[] and suggest that our approach is worthy of further
priately sampled from the planar surface to the measuremémntestigation. Of the 16 frames that contained at least one
points on the rays, thus expressing the knowledge that then-regular object, 14 of them were correctly identied as
space between the sensor and the measured point is free @rdaining the objects.
we don't have any information about the volume between the The false positives for the regular objects are caused by our
measurement point and the planar surface. choice of parameters when to split two clusters of points. We
Using the same poses that we obtained from registering thged a maximal Euclidean distance of 2 cm for points to belong
individual frames, we can transform the points of all sadpldo the same cluster. This can cause some objects to be $plit in
occlusion frusta into a common reference frame. As a ndxto distinct clusters, while larger thresholds will causstidct
step we simply create an octree containing all sample poimggjects to be fused into one cluster. Depending on the data a
and afterwards iterate over all leaves: If a leaf contairmigh misclassi cation can cause three negative entries in thie téf
sample points and we detect all labels of the involved framdbe projected concave hull of a specular object for a large pa
this leaf is considered to be part of the intersection. Qiissr approximated the shape of the occlusion, it will be labe#isd
we can discard the leaf, since it only contained a few poin®,regular object (thus resulting in one false positive ane on
thus meaning that it was on or near the borders of the frugase negative). However, if the analysis of correspondiolg
or was not part of the intersection (since in at least one drarfeatures a large portion of unexplained empty grid cells, th
this particular volume was not occluded, i.e. in that framgame object can additionally cause a false positive traaapa
the leaf's volume is between the camera and some regufdject to be detected. An example is shown in Fiddre 4. To
measurements). avoid such types of misclassi cation the information of the
analysis of the concave hulls needs to be combined with the
IV. RESULTS analysis of the holes, which we have not done, yet.
A better choice of the required thresholds (currently set by
In our current experiments we used data provided by Miand) should lead to further improvements and we intend to
crosoft Kinect and Asus Xtion Live sensors. However since West this on a larger dataset in the future.
only rely on the 3D information of the point clouds we believe )
that we can achieve results of at least the same quality if We Reconstruction Results
were to use a 3D laser scanner instead, since the point cloudds a rst experiment for the reconstruction we applied our
provided by a laser scanner usually feature much less noisethod to the occlusion caused by a non-transparent object.



TABLE I: Detection Results

true positives false positives false negatives precision  ecall F; score
Regular 32 4 0 88.9% 100.0% 94.1%
Re ective 5 0 2 100.0% 71.4% 83.3%
Transparent 8 4 1 66.7 % 88.9% 76.2%

() (b)
Fig. 5: Partial view of the point clouds from the mug recon-

struction: Point clouds and variously colour occlusiorsfra  Fig. 6: The six different point of views used to reconstrine t
from two different viewpoints of the mug. glass on the tabletop.

This way we are able to compare the results of our reconstruc-

tion with some actual measurements to provide evidence of

how well the approach works. Apart from the fact that we fed

the detected holes, caused by the occlusion of the mugtlgirec

to our reconstruction, this experiment does not differ from

the subsequent experiments. The object chosen was a normal

coffee mug. We observed it from 4 different points of view

The frusta computed from each of the 4 frames (transformed @ ()
into the common reference frame) are presented in Figdre 5a

and[Sbh respectively. Comparison between the real observ
data (which we interpret as some kind of ground truth) an
the volume estimated by our reconstruction shows that whil
the reconstruction is not perfect, it should be suf cient fo
manipulation tasks.

After the promising results from the mug reconstruction .
we applied our method to several transparent objects. In tt.
following we show the results for the reconstruction of asgla
and a French press, sporting a non-transparent handle, each © @
composed of images of the scene from six different points Bfg. 7: Reconstruction result for dataset shown in Fi§lif@}p:
view (see Figureg]6 arld 8). To provide an impression of tl@d[{b) show the occlusion frusta (colours used to diststgui
quality of the reconstruction we present the registereatpobetween each framd); [c) apd](d) display the resulting inter

cloud from two perspectives, rst together with the registe section (for viewing purposes completely coloured in hlue)
occlusion frusta and secondly with the intersection rasmilt

from the frusta. The results are in Figlide 7 for the glass and

Figure[9 for the cafetiere. for describing the transparent objects. While the lled lesv
of the octree give a good impression for the size and shape of
the object its volume is constructed from cuboid elemengs (i
In this paper we have presented a novel and simple approdod octree leaves). This can, depending on the chosen size of
to estimate the size, shape and position of transparenttsbjehe leaves, lead to a 'blocky' representation of the surface
in point cloud data. Our results indicate that the resuléag- which might provide subsequent interactions like grasping
mation will be suitable for collision avoidance or intefiaos  with slightly wrong information. The alternative repretaion
like grasping of the transparent objects. that we intend to employ makes use of polyhedra to constrain
Currently, we are working on an alternative representatiahe frusta caused by the occlusions.

V. CONCLUSION AND FUTURE WORK



order to obtain a better evaluation for the reconstructi@n w
are planning to compare the reconstructions with modelseof t
objects in question — either created by hand or by obtaining
measurements from non-transparent equivalents as in [9, 10
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